

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Dr. Collinsville, IL 62234

January 30, 2024

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Re: Hennepin Old West Ash Pond System (IEPA ID: W1550100002-01, 03) 2023 Annual Consolidated Report

Dear Mr. LeCrone:

In accordance with 35 IAC § 845.550, Dynegy Midwest Generation, LLC (DMG) is submitting the annual consolidated report for the Hennepin Old West Ash Pond System (IEPA ID: W1550100002-01, 03), as enclosed.

Sincerely,

Dianna Sickner

Dianna Tickner Sr. Director Decommissioning & Demolition

Enclosures

Annual Consolidated Report Dynegy Midwest Generation, LLC Hennepin Power Plant Old West Ash Pond System; IEPA **ID: W1550100002-01, 03**

In accordance with 35 IAC § 845.550, Dynegy Midwest Generation, LLC (DMG) has prepared the annual consolidated report. The report is provided in two sections as follows:

Section 1

1) Annual CCR fugitive dust control report (Section 845.500(c))

Section 2

2) Annual inspection report (Section 845.540(b)), including:

A) Annual hazard potential classification certification

B) Annual structural stability assessment certification

C) Annual safety factor assessment certification

D) Inflow design flood control system plan certification

Section 3

3) Annual Groundwater Monitoring and Corrective Action Report (Section 845.610(e))

Section 1 Annual CCR Fugitive Dust Control Report

Annual CCR Fugitive Dust Control Report for Hennepin Power Plant

Prepared for:

Dynegy Midwest Generation, LLC

Hennepin Power Plant 13498 East 800th Street Hennepin, IL 61327

November 2023

Hennepin Power Plant ANNUAL CCR FUGITIVE DUST CONTROL REPORT

Reporting Year: 4th Quarter 2022 through 3rd Quarter 2023 Environmenta Completed b

Name

Title

This Annual CCR Fugitive Dust Control Report has been prepared for the Hennepin Power Plant in accordance with 40 CFR 257.80(c) and 35 I.A.C. 845.500. Section 1 provides a description of the actions taken to control CCR fugitive dust at the facility during the reporting year, including a summary of any corrective measures taken. Section 2 provides a record of citizen complaints received concerning CCR fugitive dust at the facility during the reporting year, including a summary of any corrective measures taken.

Section 1 Actions Taken to Control CCR Fugitive Dust

In accordance with the Hennepin Power Plant CCR Fugitive Dust Control Plan (Plan), the following measures were used to control CCR fugitive dust from becoming airborne at the facility during the reporting year:

CCR Activity	Actions Taken to Control CCR Fugitive Dust
	CCR to be emplaced in the landfill will be conditioned before emplacement.
	Water dry CCR material from periodic cleanout / maintenance of CCR handling or CCR dust control systems as it is added into the CCR surface impoundments, as necessary.
Management of CCR in the	Wet management of CCR bottom ash in CCR surface impoundments.
facility's CCR units	Water areas of exposed CCR in CCR units, as necessary.
	Naturally occurring grass vegetation in areas of exposed CCR in CCR surface impoundments.
	Apply chemical dust suppressant on areas of exposed CCR in CCR units, as necessary.
	Wet sluice CCR fly ash and CCR bottom ash to CCR surface impoundments.

Hennepin Power Plant ANNUAL CCR FUGITIVE DUST CONTROL REPORT

CCR Activity	Actions Taken to Control CCR Fugitive Dust		
	Pneumatically convey dry CCR fly ash and FGD ash to storage silos in an enclosed system.		
	CCR to be emplaced in the landfill will be conditioned before emplacement.		
Handling of CCR at the facility	Load CCR transport trucks from the CCR fly ash silos in a partially enclosed area.		
	Load CCR transport trucks from the CCR fly ash silos using vented spouts.		
	Load FGD ash transport trucks from the FGD ash silo using a pug mill or vented spouts, as necessary.		
	Perform housekeeping, as necessary, in the fly ash loading area.		
	Operate fly ash handling system in accordance with good operating practices.		
	Maintain and repair as necessary dust controls on the fly ash handling system.		
	CCR to be emplaced in the landfill is conditioned before emplacement.		
Transportation of CCR at the	Limit the speed of vehicles to no more than 15 mph on facility roads.		
facility	Sweep or rinse off the outside of the trucks transporting CCR, as necessary.		
	Remove CCR, as necessary, deposited on facility road surfaces during transport.		

Based on a review of the Plan and inspections associated with CCR fugitive dust control performed in the reporting year, the control measures identified in the Plan as implemented at the facility effectively minimized CCR from becoming airborne at the facility. No revisions or additions to control measures identified in the Plan were needed in this report. The Hennepin Power Plant ceased to operate and ceased to be a generating unit effective November 1, 2019.

No material changes occurred in the reporting year in site conditions potentially resulting in CCR fugitive dust becoming airborne at the facility that warrant an amendment of the Plan. The plan was amended to reflect administrative changes and adjustments to site condition controls.

Section 2 Record of Citizen Complaints

No citizen complaints were received regarding CCR fugitive dust at Hennepin Power Plant in the reporting year.

Section 2

Annual inspection report (Section 845.540(b)), including:

- A) Annual hazard potential classification certification, if applicable (Section 845.440)
- B) Annual structural stability assessment certification, if applicable (Section 845.450)
- C) Annual safety factor assessment certification, if applicable (Section 845.460)
- D) Inflow design flood control system plan certification (Section 845.510(c))

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 35 IAC § 845.540

(b)(1) The CCR surface impoundment must be inspected on an annual basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR surface impoundment is consistent with recognized and generally accepted engineering standards. The inspection must, at a minimum, include:

A) A review of available information regarding the status and condition of the CCR surface impoundment, including files available in the operating record (e.g., CCR surface impoundment design and construction information required by Sections 845.220(a)(1) and 845.230(d)(2)(A), previous structural stability assessments required under Section 845.450, the results of inspections by a qualified person, and results of previous annual inspections);

B) A visual inspection of the CCR surface impoundment to identify signs of distress or malfunction of the CCR surface impoundment and appurtenant structures;

C) A visual inspection of any hydraulic structures underlying the base of the CCR surface impoundment or passing through the dike of the CCR surface impoundment for structural integrity and continued safe and reliable operation;

D) The annual hazard potential classification certification, if applicable (see Section 845.440);

E) The annual structural stability assessment certification, if applicable (see Section 845.450);

F) The annual safety factor assessment certification, if applicable (see Section 845.460); and

G) The inflow design flood control system plan certification (see Section 845.510(c)).

SITE INFORMATION				
Site Name / Address / Date of Inspection	Hennepin Power Station			
	Putnam County, Illinois 62327			
	10/3/2023			
Operator Name / Address	Luminant Generation Company LLC			
	6555 Sierra Drive, Irving, TX 75039			
CCR unit	Old West Ash Pond			

INSPECTION REPORT 35 IAC § 845.540	
(b)(1)(D) The annual hazard potential classification certification, if applicable (see Section 845.440).	Based on a review of the CCR unit's annual hazard potential classification, the unit is classified as a Class II CCR surface impoundment.
(b)(2)(A) Any changes in geometry of the structure since the previous annual inspection.	Capping and closure of the Old West Ash Pond complete.
(b)(2)(B) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection	See the attached.
b)(2)(C) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection:	See the attached.
b)(2)(D) The storage capacity of the impounding structure at the time of the inspection	Capping and closure of the Old West Ash Pond complete.
(b)(2)(E) The approximate volume of the impounded water and CCR contained in the unit at the time of the inspection.	Approximately 310 acre-feet of capped and closed CCR.
(b)(2)(F) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit	Based on a review of the CCR unit's records and visual observation during the on-site inspection, there was no appearance of an actual or potential structural weakness of the CCR unit, nor an existing condition that is disrupting or would disrupt the operation and safety of the unit.

INSPECTION REPORT 35 IAC § 845.540	
(b)(2)(G) Any other changes that may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no other changes which may have affected the stability or operation of the CCR unit have taken place since the previous annual inspection.
(b)(1)(G) The inflow design flood control system plan certification (see Section 845.510(c))	Pond is closed and capped.

35 IAC § 845.540 - Annual inspection by a qualified professional engineer.

I, James Knutelski, P.E., certify under penalty of law that the information submitted in this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the state of Illinois. The information submitted, is to the best of my knowledge and belief, true, accurate and complete. Based on the annual inspection, the design, construction, operation, and maintenance of the CCR Unit is consistent with recognized and generally accepted good engineering standards. Based on a review of the records for the CCR unit and a visual inspection of the unit to document no material changes to the unit, the hazard potential classification was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450.

James Knutelski, PE Illinois PE No. 062-054206, Expires: 11/30/2025 Date: 01/07/2024

Site Name: Hennepin Power Station CCR Unit: Old West Ash Pond

35 IAC § 845.540 (b)(2)(B)		35 IAC § 845.540 (b)(2)(C)							
La standard ID		Maximum recorded reading		Approximate Depth / Elevation					
#	Type since previous annual inspection (ft)		Since previous		Elevation (ft)		Depth (ft)		
P002	Piezometer	abandoned	inspection.	Minimum	Present	Maximum	Minimum	Present	Maximum
P003	Piezometer	abandoned	Impounded						
			Water						
			CCR	460		465	19		24

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 35 IAC § 845.540

(b)(1) The CCR surface impoundment must be inspected on an annual basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR surface impoundment is consistent with recognized and generally accepted engineering standards. The inspection must, at a minimum, include:

A) A review of available information regarding the status and condition of the CCR surface impoundment, including files available in the operating record (e.g., CCR surface impoundment design and construction information required by Sections 845.220(a)(1) and 845.230(d)(2)(A), previous structural stability assessments required under Section 845.450, the results of inspections by a qualified person, and results of previous annual inspections);

B) A visual inspection of the CCR surface impoundment to identify signs of distress or malfunction of the CCR surface impoundment and appurtenant structures;

C) A visual inspection of any hydraulic structures underlying the base of the CCR surface impoundment or passing through the dike of the CCR surface impoundment for structural integrity and continued safe and reliable operation;

D) The annual hazard potential classification certification, if applicable (see Section 845.440);

E) The annual structural stability assessment certification, if applicable (see Section 845.450);

F) The annual safety factor assessment certification, if applicable (see Section 845.460); and

G) The inflow design flood control system plan certification (see Section 845.510(c)).

SITE INFORMATION				
Site Name / Address / Date of Inspection	Hennepin Power Station			
	Putnam County, Illinois 62327			
	10/3/2023			
Onerster Name / Address	Luminant Generation Company LLC			
	6555 Sierra Drive, Irving, TX 75039			
CCR unit	Old West Polishing Pond			

INSPECTION REPORT 35 IAC § 845.540	
(b)(1)(D) The annual hazard potential classification certification, if applicable (see Section 845.440).	Based on a review of the CCR unit's annual hazard potential classification, the unit is classified as a Class II CCR surface impoundment.
(b)(2)(A) Any changes in geometry of the structure since the previous annual inspection.	The Old West Polishing Pond was clean closed in 2020.
(b)(2)(B) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection	N/A
b)(2)(C) The approximate minimum, maximum, and present depth and elevation of the impounded water and CCR since the previous annual inspection;	N/A
b)(2)(D) The storage capacity of the impounding structure at the time of the inspection	Approximately 60 acre-feet
(b)(2)(E) The approximate volume of the impounded water and CCR contained in the unit at the time of the inspection.	Approximately 1 acre-feet of storm water only.
(b)(2)(F) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit	Based on a review of the CCR unit's records and visual observation during the on-site inspection, there was no appearance of an actual or potential structural weakness of the CCR unit, nor an existing condition that is disrupting or would disrupt the operation and safety of the unit.

INSPECTION REPORT 35 IAC § 845.540	
(b)(2)(G) Any other changes that may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during the on-site inspection, no other changes which may have affected the stability or operation of the CCR unit have taken place since the previous annual inspection.
(b)(1)(G) The inflow design flood control system plan certification (see Section 845.510(c))	Based on a review of the CCR unit's records, the CCR unit is designed, operated, and maintained to adequately manage the flow from the peak discharge from the inflow design flood.

35 IAC § 845.540 - Annual inspection by a qualified professional engineer.

I, James Knutelski, P.E., certify under penalty of law that the information submitted in this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the state of Illinois. The information submitted, is to the best of my knowledge and belief, true, accurate and complete. Based on the annual inspection, the design, construction, operation, and maintenance of the CCR Unit is consistent with recognized and generally accepted good engineering standards. Based on a review of the records for the CCR unit and a visual inspection of the unit to document no material changes to the unit, the hazard potential classification was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450, the safety factor assessment was conducted in accordance with the requirements of Section 845.450.

James Knutelski, PE Illinois PE No. 062-054206, Expires: 11/30/2025 Date: 01/07/2024

 Site Name:
 Hennepin Power Station

 CCR Unit:
 Old West Polishing Pond

35 IAC § 845.540 (b)(2)(B)		35 IAC § 845.540 (b)(2)(C)							
		Maximum recorded reading		Approximate Depth / Elevation					
#	Туре	since previous annual inspection (ft)	Since previous	Elevation (ft)		Depth (ft)			
None			inspection.	Minimum	Present	Maximum	Minimum	Present	Maximum
			Impounded Water		446			1	
			CCR	0		0	0		0

Section 3

Annual Groundwater Monitoring and Corrective Action Report (Section 845.610(e))

Prepared for Dynegy Midwest Generation, LLC

Date January 31, 2024

Project No. 1940103649-010

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

IEPA ID NO. W1550100002-01 AND W1550100002-03

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER **MONITORING AND CORRECTIVE ACTION REPORT** HENNEPIN POWER PLANT WEST ASH POND SYSTEM

Project name	Hennepin Power Plant V
Project no.	1940103649-010
Recipient	Dynegy Midwest Genera
Document type	Annual Groundwater Mo
Version	FINAL
Date	January 31, 2024
Prepared by	Jeff R. Kampman
Checked by	Lauren D. Cook
Approved by	Eric J. Tlachac, PE
Description	Annual Report Required

Hennepin Power Plant West Ash Pond System ation, LLC onitoring and Corrective Action Report by 35 I.A.C. § 845

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Jeff R. Kampman Senior Project Scientist

Ein

Eric J. Tlachac, PE **Senior Managing Engineer**

CONTENTS

EXECU	TIVE SUMMARY	3
1.	Introduction	5
2.	Monitoring and Corrective Action Program Status	7
3.	Key Actions Completed in 2023	8
3.1	Sample and Analysis Summary	8
3.2	Exceedances of GWPS	10
3.3	Exceedances of Background	10
4.	Problems Encountered and Actions to Resolve the Problems	11
5.	Key Activities Planned for 2024	12
6.	References	13

TABLES (IN TEXT)

Table A35 I.A.C. § 845 Monitoring Program Summary for 2023

TABLES (ATTACHED)

Table 1	Field Parameters and Analytical Results – Quarter 2, 2023
	Field Parameters and Analytical Results – Quarter 3, 2023
Table 2	Comparison of Statistical Results to GWPS – Quarter 2, 2023
	Comparison of Statistical Results to GWPS – Quarter 3, 2023

FIGURES

- Figure 1 Monitoring Well Location Map
- Figure 2 GWPS Exceedance Map Uppermost Aquifer, Quarters 2-3, 2023
- Figure 3 Potentiometric Surface Map, April 30, 2023
- Figure 4 Potentiometric Surface Map, May 30, 2023
- Figure 5 Potentiometric Surface Map, June 21, 2023
- Figure 6 Potentiometric Surface Map, July 21, 2023
- Figure 7 Potentiometric Surface Map, August 21 and 22, 2023
- Figure 8 Potentiometric Surface Map, September 30, 2023
- Figure 9 Potentiometric Surface Map, October 31, 2023
- Figure 10 Potentiometric Surface Map, November 13, 2023
- Figure 11 Potentiometric Surface Map, December 21, 2023

ATTACHMENTS

- Attachment A Groundwater Elevation Data
- Attachment B Alternative Source Demonstration and IEPA Approval Letter
- Attachment C Corrective Measures Assessment Schedule Extension Request and IEPA Approval Letter
- Attachment D Comparison of Statistical Results to Background Quarter 2, 2023
 - Comparison of Statistical Results to Background Quarter 3, 2023

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
CCA	compliance commitment agreement
CCR	coal combustion residuals
CMA	assessment of corrective measures
DMG	Dynegy Midwest Generation, LLC
E001	Quarter 2, 2023 sampling event
E002	Quarter 3, 2023 sampling event
E003	Quarter 4, 2023 sampling event
GWPS	groundwater protection standard
HPP	Hennepin Power Plant
ID	identification
IEPA	Illinois Environmental Protection Agency
NID	National Inventory of Dams
No.	number
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SI	surface impoundment
SSI	statistically significant increase
WAPS	West Ash Pond System

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.610(e) (*Annual Groundwater Monitoring and Corrective Action Report*) for the West Ash Pond System (WAPS) located at Hennepin Power Plant (HPP) near Hennepin, Illinois. The WAPS is recognized by coal combustion residuals (CCR) unit identification (ID) number (No.) 804, Illinois Environmental Protection Agency (IEPA) ID No. W1550100002-01 and W1550100002-03, and National Inventory of Dams (NID) No. IL50698.

The WAPS was closed in accordance with the Closure and Post Closure Care Plan submitted to IEPA in January 2018. IEPA approved the Closure and Post-Closure Care Plan on June 19, 2018. Closure construction began in August of 2019 and was completed in November of 2020.

As required by 35 I.A.C. § 845, an operating permit application for the WAPS was submitted by Dynegy Midwest Generation, LLC (DMG) to IEPA by October 31, 2021 in accordance with the requirements specified in 35 I.A.C. § 845.230(d), and is pending approval. DMG entered into a compliance commitment agreement (CCA) with IEPA on December 28, 2022. As specified in the CCA, groundwater monitoring in accordance with the proposed groundwater monitoring plan and sampling methodologies provided in the operating permit application for the WAPS commenced in the second quarter of 2023. All available groundwater monitoring data collected in 2023 is summarized in **Table 1** (field parameters and analytical results) and **Attachment A** (groundwater elevation data)¹. After the WAPS has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit.

In accordance with 35 I.A.C. § 845.610(b)(3)(C) and the statistical analysis plan submitted with the operating permit application (Appendix A of the Groundwater Monitoring Plan [Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021]), statistically derived values for constituent concentrations observed at compliance monitoring wells were compared with the groundwater protection standards (GWPSs) described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS (**Table 2**). The following GWPS exceedances were determined in 2023²:

- Arsenic in 21R and 51
- Boron in 21R, 22, 23, and 35
- Caldmium in 22
- Lithium in 22
- Sulfate in 23 and 35
- Total Dissolved Solids in 35

An alternative source demonstration (ASD) was submitted on November 10, 2023 for the cadmium GWPS exceedance determined during the Quarter 2, 2023 sampling event. The ASD was approved by the IEPA on December 11, 2023 (**Attachment B**). This cadmium exceedance

¹ Analytical data received after December 31, 2023 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

² GWPS exceedances determined after January 31, 2024 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

was also determined after the Quarter 3, 2023 sampling event, and the approved ASD is applicable to this exceedance as well. An ASD was not completed for the remaining GWPS exceedances listed above; therefore, they will be addressed in accordance with 35 I.A.C. § 845.660. The assessment of corrective measures (CMA) was initiated on December 10, 2023, and a CMA extension request was submitted to IEPA on December 11, 2023 and approved on December 12, 2023 (**Attachment C**). Because the CMA is in progress, a remedy has not yet been selected under 35 I.A.C. § 845.670 and remedial activities have not been initiated under 35 I.A.C. § 845.780 in 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(B), statistically derived values for constituent concentrations observed at compliance monitoring wells were also evaluated quarterly for statistical exceedances over background levels (**Attachment D**).

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) on behalf of DMG, to provide the information required by 35 I.A.C. § 845.610(e) for the WAPS located at HPP near Hennepin, Illinois. The owner or operator of a CCR surface impoundment (SI) must prepare and submit to IEPA by January 31st of each year an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year as part of the Annual Consolidated Report required by 35 I.A.C. § 845.550. The Annual Groundwater Monitoring and Corrective Action Report shall document the status of the groundwater monitoring and corrective action plan for the CCR SI (**Section 2**), summarize key actions completed, including the status of permit applications and Agency approvals (**Section 3**), describe any problems encountered and actions to resolve the problems (**Section 4**), and project key activities for the upcoming year (**Section 5**).

At a minimum, the annual report must contain the following information, to the extent available:

- A. A map, aerial image, or diagram showing the CCR SI and all background (or upgradient) and [downgradient] compliance monitoring wells, including the well identification numbers, that are part of the groundwater monitoring program for the CCR SI (Figure 1) and a visual delineation of any exceedances of the [groundwater protection standard] GWPS (Figures 2).
- B. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken (**Section 3**, paragraph 1).
- C. A potentiometric surface map for each groundwater elevation sampling event required by 35 I.A.C. § 845.650(b)(2) (**Figures 3 through 11**).
- D. In addition to all the monitoring data obtained under 35 I.A.C. §§ 845.600-680, a summary including the number of groundwater samples that were collected for analysis for each background and [downgradient] compliance well, and the dates the samples were collected (Section 3.1 and Table A).
- E. A narrative discussion of any statistically significant increases (SSIs) over background levels for the constituents listed in 35 I.A.C. § 845.600 (Section 3.3 and Attachment D).
- F. Other information required to be included in the annual report as specified in 35 I.A.C. §§ 845.600-680.

A section at the beginning of the annual report that provides an overview of the current status of the groundwater monitoring program and corrective action plan for the CCR SI (see **Executive Summary**). At a minimum, the summary must:

- A. Specify whether groundwater monitoring data shows an SSI over background concentrations for one or more constituents listed in 35 I.A.C. § 845.600.
- B. Identify those constituents having an SSI over background concentrations and the names of the monitoring wells associated with the SSI(s).
- C. Specify whether there have been any exceedances of the GWPS for one or more constituents listed in 35 I.A.C. § 845.600.

- D. Identify those constituents with exceedances of the GWPS in 35 I.A.C. § 845.600 and the names of the monitoring wells associated with the exceedance.
- E. Provide the date when the assessment of corrective measures was initiated for the CCR SI.
- F. Provide the date when the assessment of corrective measures was completed for the CCR SI.
- G. Specify whether a remedy was selected under 35 I.A.C. § 845.670 during the current annual reporting period, and if so, the date of remedy selection.
- H. Specify whether remedial activities were initiated or are ongoing under 35 I.A.C. § 845.780 during the current annual reporting period.

This report provides the required information for the WAPS for calendar year 2023.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The WAPS was closed in accordance with the Closure and Post Closure Care Plan submitted to IEPA in January 2018. IEPA approved the Closure and Post-Closure Care Plan on June 19, 2018. Closure construction began in August of 2019 and was completed in November of 2020.

An operating permit application for the WAPS was submitted by DMG to IEPA by October 31, 2021 in accordance with the requirements specified in 35 I.A.C. § 845.230(d), and is pending approval. DMG entered into a CCA with IEPA on December 28, 2022. As specified in the CCA, groundwater monitoring in accordance with the proposed groundwater monitoring plan and sampling methodologies provided in the operating permit application for the WAPS commenced in the second quarter of 2023. After the WAPS has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit. As specified in the CCA, groundwater sampling requirements that apply to the CCR SI under other existing permit programs will become void upon issuance of an approved operating permit pursuant to 35 I.A.C § 845. In addition, and in accordance with the CCA, groundwater monitoring performed under Section 1.5 of the approved Closure and Post-Closure Care Plan ceased with commencement of quarterly groundwater monitoring under 35 I.A.C § 845.

As noted in the **Executive Summary** and **Section 3.2**, GWPS exceedances were determined for the WAPS in 2023. An ASD was submitted on November 10, 2023 for the cadmium GWPS exceedance determined during the Quarter 2, 2023 sampling event. The ASD was approved by the IEPA on December 11, 2023 (**Attachment B**). An ASD was not completed for the remaining GWPS exceedances; they will be addressed in accordance with 35 I.A.C. § 845.660. The CMA was initiated on December 10, 2023. A CMA extension request was submitted to IEPA on December 11, 2023 (**Attachment C**). Because the CMA is in progress, a remedy has not yet been selected under 35 I.A.C. § 845.670 and remedial activities have not been initiated under 35 I.A.C. § 845.780 in 2023.

3. KEY ACTIONS COMPLETED IN 2023

The proposed 35 I.A.C. § 845 monitoring system is presented in **Figure 1**. No wells were installed or decommissioned in 2023.

Monitoring well inspections and redevelopment of the monitoring wells that were not sampled in 2022 were also completed prior to initiating groundwater monitoring in the second quarter of 2023.

Pressure transducers equipped with data loggers were deployed in monitoring system monitoring wells for measurement of monthly water level elevations as required by 35 I.A.C. § 845.650(b)(2). **Attachment A** summarizes the groundwater elevation data collected in 2023. Potentiometric surfaces for April through December 2023 are included in **Figures 3 through 11**.

A summary of the samples collected in 2023 is included in **Section 3.1**. Narrative discussions of exceedances of GWPSs and background are included in **Section 3.2** and **Section 3.3**, respectively. Statistical procedures used to evaluate groundwater results are provided in Appendix A of the Groundwater Monitoring Plan provided in the operating permit application (Ramboll, 2021).

3.1 Sample and Analysis Summary

One groundwater sample was collected from each background and compliance well during each quarterly monitoring event beginning in the second quarter of 2023. All samples were collected and analyzed in accordance with the Groundwater Monitoring Plan provided in the operating permit application (Ramboll, 2021). A summary of the samples collected from background and compliance monitoring wells in 2023 is included in **Table A** on the following page. **Table 1** is a summary of the field parameters and analytical results from the 2023 sampling events. Laboratory analytical reports and field data sheets were previously provided in the quarterly Groundwater Monitoring Data and Detected Exceedances Reports for Quarter 2 and Quarter 3 (Ramboll, 2023a; Ramboll, 2023b); therefore, these reports are not attached to this annual report to avoid reproduction of lengthy data transmittals that have been previously provided in hardcopy. Analytical data received after December 31, 2023 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

Event ID	Sampling Dates ^{1, 2, 3}	Analytical Data Receipt Date ⁴	Exceedance Determination Date ⁴	ASD Completion Date	Required CMA Initiation Date ⁵
E001	May 31 – June 1, 2023	July 13, 2023	September 11, 2023	November 10, 2023	December 10, 2023
E002	August 23 - 25, 2023	November 16, 2023	January 15, 2024	NA	NA
E003	November 13 - 15, 2023	January 4, 2024	TBD	TBD	TBD

Table A. 35 I.A.C. § 845 Monitoring Program Summary for 2023

Notes:

ASD: Alternative Source Demonstration

CMA: Corrective Measures Assessment

NA: not applicable

TBD: to be determined in 2024

¹ All samples were analyzed for the parameters listed in 35 I.A.C. § 845.600, calcium, and turbidity.

² The following background wells were sampled for each event: 32 and 34

³ The following compliance wells were sampled for each event: 21R, 22, 22D, 23, 27, 35, 49, 50, and 51

⁴ Analytical data received after December 31, 2023 and GWPS exceedances determined after January 31, 2024 will be reported in the Quarter 4, 2023 Groundwater Monitoring

Data and Detected Exceedances Report.

⁵ Exceedances for events E002 and E003 may be incorporated into the CMA initiated after event E001 on a case by case basis, as opposed to generating a new CMA.

3.2 Exceedances of GWPS

In accordance with 35 I.A.C. § 845.610(b)(3)(C), the statistically derived values identified as Statistical Results in **Table 2** were compared with the GWPSs described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS. The following statistical exceedances of the GWPSs were determined and are shown on **Figure 2**³:

- Arsenic in 21R, 51,
- Boron in 21R, 22, 23, and 35
- Caldmium in 22
- Lithium in 22
- Sulfate in 23 and 35
- TDS in 35

As allowed in 35 I.A.C. § 845.650(e), an ASD was submitted on November 10, 2023 for the exceedances of the cadmium GWPS detected during the Quarter 2, 2023 sampling event. The ASD was approved by the IEPA on December 11, 2023 (**Attachment B**). An ASD was not completed for the remaining GWPS exceedances listed above and will be addressed in accordance with 35 I.A.C. § 845.660. The CMA was initiated on December 10, 2023. A CMA extension request was submitted to IEPA on December 11, 2023 and approved on December 12, 2023 (**Attachment C**). Because the CMA is in progress, a remedy was not selected under 35 I.A.C. § 845.670 and remedial activities have not been initiated under 35 I.A.C. § 845.780 in 2023.

3.3 Exceedances of Background

In accordance with 35 I.A.C. § 845.610(b)(3)(B), groundwater monitoring data were evaluated quarterly for exceedances over background levels for the constituents listed in 35 I.A.C. § 845.600. **Attachment D** shows the statistically derived values identified as Statistical Results compared to background levels.

³ GWPS exceedances determined after January 31, 2024 will be reported in the Quarter 4, 2023 Groundwater Monitoring Data and Detected Exceedances Report.

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

Groundwater monitoring commenced in the second quarter of 2023. Groundwater samples were collected and analyzed in accordance with the Groundwater Monitoring Plan provided in the operating permit application (Ramboll, 2021) and all data were accepted. After the WAPS has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit.

Due to malfunctioning pressure transducers, data gaps exist in monthly water level elevations prior to the fourth quarter. Monthly depth to water measurements were collected manually in the fourth quarter. Pressure transducers were refurbished and were redeployed in January 2024.

5. KEY ACTIVITIES PLANNED FOR 2024

The following key activities are planned for 2024:

- Continuation of groundwater monitoring in accordance with the proposed groundwater monitoring plan and sampling methodologies provided in the operating permit application for the WAPS. After the WAPS has been issued an approved operating permit, groundwater monitoring shall be conducted in accordance with that operating permit. Groundwater monitoring will include:
 - Monthly groundwater elevations
 - Quarterly groundwater sampling
- Complete evaluation of analytical data from the compliance wells to determine whether exceedances above GWPSs have occurred.
- If a GWPS exceedance is identified, potential alternative sources (*i.e.*, a source other than the CCR unit caused the GWPS exceedance or that the exceedance resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
 - If an alternative source is identified to be the cause of the GWPS exceedance, a written demonstration will be completed within 60 days of determination and included in the 2024 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternative source(s) is not identified to be the cause of the GWPS exceedance, the applicable requirements of 35 I.A.C. § 845.660 (*i.e.*, assessment of corrective measures) will be met.
- The CMA process will continue in accordance with 35 I.A.C. § 845.660 in 2024. A CMA extension request was submitted on December 11, 2023, and approved by IEPA on December 12, 2023. The CMA will be submitted to IEPA on or before May 8, 2024.

6. **REFERENCES**

Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, *Part 845: Standards for The Disposal Of Coal Combustion Residuals In Surface Impoundments*, effective April 21, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021. *Addendum to the Groundwater Monitoring Plan.* Hennepin Power Plant, West Ash Pond System, Hennepin, Illinois. Dynegy Midwest Generation, LLC. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023a. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 2, West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois. September 11, 2023.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023b. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 3, West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois. January 15, 2024.

TABLES

Well ID	Well Type	Event	Date	Parameter	Result	Unit
32	Background	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
32	Background	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
32	Background	E001	05/31/2023	Barium, total	0.0410	mg/L
32	Background	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
32	Background	E001	05/31/2023	Boron, total	0.143	mg/L
32	Background	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
32	Background	E001	05/31/2023	Calcium, total	102	mg/L
32	Background	E001	05/31/2023	Chloride, total	70.0	mg/L
32	Background	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
32	Background	E001	05/31/2023	Cobalt, total	0.00180	mg/L
32	Background	E001	05/31/2023	Dissolved Oxygen	1.24	mg/L
32	Background	E001	05/31/2023	Fluoride, total	0.100	mg/L
32	Background	E001	05/31/2023	Lead, total	0.004 U	mg/L
32	Background	E001	05/31/2023	Lithium, total	0.0029 J	mg/L
32	Background	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
32	Background	E001	05/31/2023	Molybdenum, total	0.0037 U	mg/L
32	Background	E001	05/31/2023	Oxidation Reduction Potential	86.0	mV
32	Background	E001	05/31/2023	pH (field)	6.9	SU
32	Background	E001	05/31/2023	Radium 226 + Radium 228, total	0.312	pCi/L
32	Background	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
32	Background	E001	05/31/2023	Specific Conductance @ 25C (field)	997	micromhos/cm
32	Background	E001	05/31/2023	Sulfate, total	63.0	mg/L
32	Background	E001	05/31/2023	Temperature	11.0	degrees C
32	Background	E001	05/31/2023	Thallium, total	0.001 U	mg/L
32	Background	E001	05/31/2023	Total Dissolved Solids	550	mg/L
32	Background	E001	05/31/2023	Turbidity, field	6.20	NTU
34	Background	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
34	Background	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
34	Background	E001	05/31/2023	Barium, total	0.0995	mg/L
34	Background	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
34	Background	E001	05/31/2023	Boron, total	0.125	mg/L
34	Background	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
34	Background	E001	05/31/2023	Calcium, total	149	mg/L
34	Background	E001	05/31/2023	Chloride, total	71.0	mg/L
34	Background	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
34	Background	E001	05/31/2023	Cobalt, total	0.0007 J	mg/L
34	Background	E001	05/31/2023	Dissolved Oxygen	1.60	mg/L
34	Background	E001	05/31/2023	Fluoride, total	0.120	mg/L
34	Background	E001	05/31/2023	Lead, total	0.004 U	mg/L
34	Background	E001	05/31/2023	Lithium, total	0.0032 J	mg/L
34	Background	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
34	Background	E001	05/31/2023	Molybdenum, total	0.0037 U	mg/L
34	Background	E001	05/31/2023	Oxidation Reduction Potential	-83.0	mV
34	Background	E001	05/31/2023	pH (field)	6.9	SU
34	Background	E001	05/31/2023	Radium 226 + Radium 228, total	0.492	pCi/L
34	Background	E001	05/31/2023	Selenium, total	0.0006 U	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
34	Background	E001	05/31/2023	Specific Conductance @ 25C (field)	1,250	micromhos/cm
34	Background	E001	05/31/2023	Sulfate, total	49.0	mg/L
34	Background	E001	05/31/2023	Temperature	12.3	degrees C
34	Background	E001	05/31/2023	Thallium, total	0.001 U	mg/L
34	Background	E001	05/31/2023	Total Dissolved Solids	845	mg/L
34	Background	E001	05/31/2023	Turbidity, field	1.80	NTU
21R	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
21R	Compliance	E001	05/31/2023	Arsenic, total	0.0274	mg/L
21R	Compliance	E001	05/31/2023	Barium, total	0.296	mg/L
21R	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
21R	Compliance	E001	05/31/2023	Boron, total	2.32	mg/L
21R	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
21R	Compliance	E001	05/31/2023	Calcium, total	121	mg/L
21R	Compliance	E001	05/31/2023	Chloride, total	103	mg/L
21R	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
21R	Compliance	E001	05/31/2023	Cobalt, total	0.00130	mg/L
21R	Compliance	E001	05/31/2023	Dissolved Oxygen	1.12	mg/L
21R	Compliance	E001	05/31/2023	Fluoride, total	0.120	mg/L
21R	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
21R	Compliance	E001	05/31/2023	Lithium, total	0.0167 J+	mg/L
21R	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
21R	Compliance	E001	05/31/2023	Molybdenum, total	0.008 J	mg/L
21R	Compliance	E001	05/31/2023	Oxidation Reduction Potential	-178	mV
21R	Compliance	E001	05/31/2023	pH (field)	7.4	SU
21R	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	2.44 J+	pCi/L
21R	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
21R	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,150	micromhos/cm
21R	Compliance	E001	05/31/2023	Sulfate, total	91.0	mg/L
21R	Compliance	E001	05/31/2023	Temperature	13.2	degrees C
21R	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
21R	Compliance	E001	05/31/2023	Total Dissolved Solids	695	mg/L
21R	Compliance	E001	05/31/2023	Turbidity, field	42.0	NTU
22	Compliance	E001	05/31/2023	Antimony, total	0.0008 J	mg/L
22	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
22	Compliance	E001	05/31/2023	Barium, total	0.0585	mg/L
22	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
22	Compliance	E001	05/31/2023	Boron, total	3.44	mg/L
22	Compliance	E001	05/31/2023	Cadmium, total	0.00520	mg/L
22	Compliance	E001	05/31/2023	Calcium, total	87.1	mg/L
22	Compliance	E001	05/31/2023	Chloride, total	97.0	mg/L
22	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
22	Compliance	E001	05/31/2023	Cobalt, total	0.00240	mg/L
22	Compliance	E001	05/31/2023	Dissolved Oxygen	1.43	mg/L
22	Compliance	E001	05/31/2023	Fluoride, total	0.130	mg/L
22	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
22	Compliance	E001	05/31/2023	Lithium, total	0.0500 J+	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
22	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
22	Compliance	E001	05/31/2023	Molybdenum, total	0.0829	mg/L
22	Compliance	E001	05/31/2023	Oxidation Reduction Potential	49.0	mV
22	Compliance	E001	05/31/2023	pH (field)	7.6	SU
22	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.781 J+	pCi/L
22	Compliance	E001	05/31/2023	Selenium, total	0.0157	mg/L
22	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	999	micromhos/cm
22	Compliance	E001	05/31/2023	Sulfate, total	123	mg/L
22	Compliance	E001	05/31/2023	Temperature	15.7	degrees C
22	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
22	Compliance	E001	05/31/2023	Total Dissolved Solids	586	mg/L
22	Compliance	E001	05/31/2023	Turbidity, field	1 U	NTU
22D	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
22D	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
22D	Compliance	E001	05/31/2023	Barium, total	0.0669	mg/L
22D	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
22D	Compliance	E001	05/31/2023	Boron, total	1.57	mg/L
22D	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
22D	Compliance	E001	05/31/2023	Calcium, total	113	mg/L
22D	Compliance	E001	05/31/2023	Chloride, total	110	mg/L
22D	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
22D	Compliance	E001	05/31/2023	Cobalt, total	0.0004 J	mg/L
22D	Compliance	E001	05/31/2023	Dissolved Oxygen	1.41	mg/L
22D	Compliance	E001	05/31/2023	Fluoride, total	0.09 J	mg/L
22D	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
22D	Compliance	E001	05/31/2023	Lithium, total	0.0150 J+	mg/L
22D	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
22D	Compliance	E001	05/31/2023	Molybdenum, total	0.0054 J	mg/L
22D	Compliance	E001	05/31/2023	Oxidation Reduction Potential	-121	mV
22D	Compliance	E001	05/31/2023	pH (field)	7.2	SU
22D	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.104	pCi/L
22D	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
22D	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,120	micromhos/cm
22D	Compliance	E001	05/31/2023	Sulfate, total	104	mg/L
22D	Compliance	E001	05/31/2023	Temperature	15.9	degrees C
22D	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
22D	Compliance	E001	05/31/2023	Total Dissolved Solids	640	mg/L
22D	Compliance	E001	05/31/2023	Turbidity, field	1.80	NTU
23	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
23	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
23	Compliance	E001	05/31/2023	Barium, total	0.0481	mg/L
23	Compliance	E001	05/31/2023	Beryllium, total	0.0003 J	mg/L
23	Compliance	E001	05/31/2023	Boron, total	8.79	mg/L
23	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
23	Compliance	E001	05/31/2023	Calcium, total	105	mg/L
23	Compliance	E001	05/31/2023	Chloride, total	55.0	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
23	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
23	Compliance	E001	05/31/2023	Cobalt, total	0.0004 J	mg/L
23	Compliance	E001	05/31/2023	Dissolved Oxygen	1.55	mg/L
23	Compliance	E001	05/31/2023	Fluoride, total	0.140	mg/L
23	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
23	Compliance	E001	05/31/2023	Lithium, total	0.0019 U	mg/L
23	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
23	Compliance	E001	05/31/2023	Molybdenum, total	0.0146	mg/L
23	Compliance	E001	05/31/2023	Oxidation Reduction Potential	-127	mV
23	Compliance	E001	05/31/2023	pH (field)	7.4	SU
23	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.392	pCi/L
23	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
23	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,280	micromhos/cm
23	Compliance	E001	05/31/2023	Sulfate, total	450	mg/L
23	Compliance	E001	05/31/2023	Temperature	13.0	degrees C
23	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
23	Compliance	E001	05/31/2023	Total Dissolved Solids	876	mg/L
23	Compliance	E001	05/31/2023	Turbidity, field	1 U	NTU
27	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
27	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
27	Compliance	E001	05/31/2023	Barium, total	0.0837	mg/L
27	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
27	Compliance	E001	05/31/2023	Boron, total	2.27	mg/L
27	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
27	Compliance	E001	05/31/2023	Calcium, total	117	mg/L
27	Compliance	E001	05/31/2023	Chloride, total	107	mg/L
27	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
27	Compliance	E001	05/31/2023	Cobalt, total	0.00330	mg/L
27	Compliance	E001	05/31/2023	Dissolved Oxygen	1.05	mg/L
27	Compliance	E001	05/31/2023	Fluoride, total	0.100	mg/L
27	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
27	Compliance	E001	05/31/2023	Lithium, total	0.0225 J+	mg/L
27	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
27	Compliance	E001	05/31/2023	Molybdenum, total	0.0037 U	mg/L
27	Compliance	E001	05/31/2023	Oxidation Reduction Potential	-16.0	mV
27	Compliance	E001	05/31/2023	pH (field)	7.0	SU
27	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.219	pCi/L
27	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
27	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,130	micromhos/cm
27	Compliance	E001	05/31/2023	Sulfate, total	118	mg/L
27	Compliance	E001	05/31/2023	Temperature	12.0	degrees C
27	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
27	Compliance	E001	05/31/2023	Total Dissolved Solids	658	mg/L
27	Compliance	E001	05/31/2023	Turbidity, field	8.20	NTU
35	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
35	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
35	Compliance	E001	05/31/2023	Barium, total	0.0381	mg/L
35	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
35	Compliance	E001	05/31/2023	Boron, total	12.6	mg/L
35	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
35	Compliance	E001	05/31/2023	Calcium, total	291	mg/L
35	Compliance	E001	05/31/2023	Chloride, total	32.0	mg/L
35	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
35	Compliance	E001	05/31/2023	Cobalt, total	0.00140	mg/L
35	Compliance	E001	05/31/2023	Dissolved Oxygen	1.60	mg/L
35	Compliance	E001	05/31/2023	Fluoride, total	0.110	mg/L
35	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
35	Compliance	E001	05/31/2023	Lithium, total	0.0210 J+	mg/L
35	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
35	Compliance	E001	05/31/2023	Molybdenum, total	0.0798	mg/L
35	Compliance	E001	05/31/2023	Oxidation Reduction Potential	105	mV
35	Compliance	E001	05/31/2023	pH (field)	6.9	SU
35	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.353	pCi/L
35	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
35	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,650	micromhos/cm
35	Compliance	E001	05/31/2023	Sulfate, total	670	mg/L
35	Compliance	E001	05/31/2023	Temperature	12.9	degrees C
35	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
35	Compliance	E001	05/31/2023	Total Dissolved Solids	1,300	mg/L
35	Compliance	E001	05/31/2023	Turbidity, field	2.20	NTU
49	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
49	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
49	Compliance	E001	05/31/2023	Barium, total	0.0711	mg/L
49	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
49	Compliance	E001	05/31/2023	Boron, total	0.758	mg/L
49	Compliance	E001	05/31/2023	Cadmium, total	0.0011 J	mg/L
49	Compliance	E001	05/31/2023	Calcium, total	115	mg/L
49	Compliance	E001	05/31/2023	Chloride, total	102	mg/L
49	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
49	Compliance	E001	05/31/2023	Cobalt, total	0.00670	mg/L
49	Compliance	E001	05/31/2023	Dissolved Oxygen	1.36	mg/L
49	Compliance	E001	05/31/2023	Fluoride, total	0.120	mg/L
49	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
49	Compliance	E001	05/31/2023	Lithium, total	0.0202 J+	mg/L
49	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
49	Compliance	E001	05/31/2023	Molybdenum, total	0.0243	mg/L
49	Compliance	E001	05/31/2023	Oxidation Reduction Potential	-19.0	mV
49	Compliance	E001	05/31/2023	pH (field)	7.0	SU
49	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.583 J+	pCi/L
49	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
49	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,080	micromhos/cm
49	Compliance	E001	05/31/2023	Sulfate, total	84.0	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
49	Compliance	E001	05/31/2023	Temperature	14.9	degrees C
49	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
49	Compliance	E001	05/31/2023	Total Dissolved Solids	602	mg/L
49	Compliance	E001	05/31/2023	Turbidity, field	21.0	NTU
50	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
50	Compliance	E001	05/31/2023	Arsenic, total	0.0087 U	mg/L
50	Compliance	E001	05/31/2023	Barium, total	0.0888	mg/L
50	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
50	Compliance	E001	05/31/2023	Boron, total	0.784	mg/L
50	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
50	Compliance	E001	05/31/2023	Calcium, total	122	mg/L
50	Compliance	E001	05/31/2023	Chloride, total	90.0	mg/L
50	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
50	Compliance	E001	05/31/2023	Cobalt, total	0.00510	mg/L
50	Compliance	E001	05/31/2023	Dissolved Oxygen	1.17	mg/L
50	Compliance	E001	05/31/2023	Fluoride, total	0.09 J	mg/L
50	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
50	Compliance	E001	05/31/2023	Lithium, total	0.00710 J+	mg/L
50	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
50	Compliance	E001	05/31/2023	Molybdenum, total	0.0411	mg/L
50	Compliance	E001	05/31/2023	Oxidation Reduction Potential	34.0	mV
50	Compliance	E001	05/31/2023	pH (field)	7.3	SU
50	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	0.580 J+	pCi/L
50	Compliance	E001	05/31/2023	Selenium, total	0.0008 J	mg/L
50	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,050	micromhos/cm
50	Compliance	E001	05/31/2023	Sulfate, total	88.0	mg/L
50	Compliance	E001	05/31/2023	Temperature	15.5	degrees C
50	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
50	Compliance	E001	05/31/2023	Total Dissolved Solids	632	mg/L
50	Compliance	E001	05/31/2023	Turbidity, field	1.80	NTU
51	Compliance	E001	05/31/2023	Antimony, total	0.0004 U	mg/L
51	Compliance	E001	05/31/2023	Arsenic, total	0.0182	mg/L
51	Compliance	E001	05/31/2023	Barium, total	0.109	mg/L
51	Compliance	E001	05/31/2023	Beryllium, total	0.0002 U	mg/L
51	Compliance	E001	05/31/2023	Boron, total	1.63	mg/L
51	Compliance	E001	05/31/2023	Cadmium, total	0.0005 U	mg/L
51	Compliance	E001	05/31/2023	Calcium, total	127	mg/L
51	Compliance	E001	05/31/2023	Chloride, total	109	mg/L
51	Compliance	E001	05/31/2023	Chromium, total	0.0028 U	mg/L
51	Compliance	E001	05/31/2023	Cobalt, total	0.0008 J	mg/L
51	Compliance	E001	05/31/2023	Dissolved Oxygen	1.50	mg/L
51	Compliance	E001	05/31/2023	Fluoride, total	0.110	mg/L
51	Compliance	E001	05/31/2023	Lead, total	0.004 U	mg/L
51	Compliance	E001	05/31/2023	Lithium, total	0.0714 J+	mg/L
51	Compliance	E001	05/31/2023	Mercury, total	0.00006 U	mg/L
51	Compliance	E001	05/31/2023	Molybdenum, total	0.0067 J	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
51	Compliance	E001	05/31/2023	Oxidation Reduction Potential	-135	mV
51	Compliance	E001	05/31/2023	pH (field)	7.2	SU
51	Compliance	E001	05/31/2023	Radium 226 + Radium 228, total	2.43 J+	pCi/L
51	Compliance	E001	05/31/2023	Selenium, total	0.0006 U	mg/L
51	Compliance	E001	05/31/2023	Specific Conductance @ 25C (field)	1,130	micromhos/cm
51	Compliance	E001	05/31/2023	Sulfate, total	97.0	mg/L
51	Compliance	E001	05/31/2023	Temperature	12.9	degrees C
51	Compliance	E001	05/31/2023	Thallium, total	0.001 U	mg/L
51	Compliance	E001	05/31/2023	Total Dissolved Solids	630	mg/L
51	Compliance	E001	05/31/2023	Turbidity, field	6.10	NTU

Notes:

C = Celsius

cm = centimeter mg/L = milligrams per liter

mV = millivolts

NTU = Nephelometric Turbidity Units pCi/L = picocuries per liter SU = Standard Units

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. J+ = The result is an estimated quantity, but the result may be biased high.

U = The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.

HENNEPIN, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
32	Background	E002	08/22/2023	Antimony, total	0.0013 U	mg/L
32	Background	E002	08/22/2023	Arsenic, total	0.00049 J	mg/L
32	Background	E002	08/22/2023	Barium, total	0.0390	mg/L
32	Background	E002	08/22/2023	Beryllium, total	0.00053 U	mg/L
32	Background	E002	08/22/2023	Boron, total	0.140	mg/L
32	Background	E002	08/22/2023	Cadmium, total	0.00021 J	mg/L
32	Background	E002	08/22/2023	Calcium, total	100	mg/L
32	Background	E002	08/22/2023	Chloride, total	68.0	mg/L
32	Background	E002	08/22/2023	Chromium, total	0.0011 U	mg/L
32	Background	E002	08/22/2023	Cobalt, total	0.00140	mg/L
32	Background	E002	08/22/2023	Dissolved Oxygen	0.0900	mg/L
32	Background	E002	08/22/2023	Fluoride, total	0.22 J	mg/L
32	Background	E002	08/22/2023	Lead, total	0.00019 U	mg/L
32	Background	E002	08/22/2023	Lithium, total	0.0048 J	mg/L
32	Background	E002	08/22/2023	Mercury, total	0.000079 U	mg/L
32	Background	E002	08/22/2023	Molybdenum, total	0.0025 U	mg/L
32	Background	E002	08/22/2023	Oxidation Reduction Potential	152	mV
32	Background	E002	08/22/2023	pH (field)	7.1	SU
32	Background	E002	08/22/2023	Radium 226 + Radium 228, total	0.636	pCi/L
32	Background	E002	08/22/2023	Selenium, total	0.00098 U	mg/L
32	Background	E002	08/22/2023	Specific Conductance @ 25C (field)	715	micromhos/cm
32	Background	E002	08/22/2023	Sulfate, total	66.0	mg/L
32	Background	E002	08/22/2023	Temperature	13.8	degrees C
32	Background	E002	08/22/2023	Thallium, total	0.00057 U	mg/L
32	Background	E002	08/22/2023	Total Dissolved Solids	570	mg/L
32	Background	E002	08/22/2023	Turbidity, field	5.33	NTU
34	Background	E002	08/25/2023	Antimony, total	0.0013 U	mg/L
34	Background	E002	08/25/2023	Arsenic, total	0.001 UJ	mg/L
34	Background	E002	08/25/2023	Barium, total	0.110	mg/L
34	Background	E002	08/25/2023	Beryllium, total	0.00053 U	mg/L
34	Background	E002	08/25/2023	Boron, total	0.0750	mg/L
34	Background	E002	08/25/2023	Cadmium, total	0.00017 U	mg/L
34	Background	E002	08/25/2023	Calcium, total	150	mg/L
34	Background	E002	08/25/2023	Chloride, total	69.0	mg/L
34	Background	E002	08/25/2023	Chromium, total	0.0011 U	mg/L
34	Background	E002	08/25/2023	Cobalt, total	0.0004 U	mg/L
34	Background	E002	08/25/2023	Dissolved Oxygen	0.200	mg/L
34	Background	E002	08/25/2023	Fluoride, total	0.19 J	mg/L
34	Background	E002	08/25/2023	Lead, total	0.00019 U	mg/L
34	Background	E002	08/25/2023	Lithium, total	0.0130	mg/L
34	Background	E002	08/25/2023	Mercury, total	0.0002 UJ	mg/L
34	Background	E002	08/25/2023	Molybdenum, total	0.0025 U	mg/L
34	Background	E002	08/25/2023	Oxidation Reduction Potential	-111	mV
34	Background	E002	08/25/2023	pH (field)	7.1	SU
34	Background	E002	08/25/2023	Radium 226 + Radium 228, total	0.823	pCi/L
34	Background	E002	08/25/2023	Selenium, total	0.00098 U	mg/L

HENNEPIN, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
34	Background	E002	08/25/2023	Specific Conductance @ 25C (field)	972	micromhos/cm
34	Background	E002	08/25/2023	Sulfate, total	46.0	mg/L
34	Background	E002	08/25/2023	Temperature	12.8	degrees C
34	Background	E002	08/25/2023	Thallium, total	0.00057 U	mg/L
34	Background	E002	08/25/2023	Total Dissolved Solids	760	mg/L
34	Background	E002	08/25/2023	Turbidity, field	4.81	NTU
21R	Compliance	E002	08/22/2023	Antimony, total	0.0013 U	mg/L
21R	Compliance	E002	08/22/2023	Arsenic, total	0.0230	mg/L
21R	Compliance	E002	08/22/2023	Barium, total	0.300	mg/L
21R	Compliance	E002	08/22/2023	Beryllium, total	0.00053 U	mg/L
21R	Compliance	E002	08/22/2023	Boron, total	1.70	mg/L
21R	Compliance	E002	08/22/2023	Cadmium, total	0.00017 U	mg/L
21R	Compliance	E002	08/22/2023	Calcium, total	120	mg/L
21R	Compliance	E002	08/22/2023	Chloride, total	95.0	mg/L
21R	Compliance	E002	08/22/2023	Chromium, total	0.0026 J	mg/L
21R	Compliance	E002	08/22/2023	Cobalt, total	0.00140	mg/L
21R	Compliance	E002	08/22/2023	Dissolved Oxygen	0.210	mg/L
21R	Compliance	E002	08/22/2023	Fluoride, total	0.23 J	mg/L
21R	Compliance	E002	08/22/2023	Lead, total	0.00280	mg/L
21R	Compliance	E002	08/22/2023	Lithium, total	0.0260 J	mg/L
21R	Compliance	E002	08/22/2023	Mercury, total	0.000079 U	mg/L
21R	Compliance	E002	08/22/2023	Molybdenum, total	0.00970	mg/L
21R	Compliance	E002	08/22/2023	Oxidation Reduction Potential	-136	mV
21R	Compliance	E002	08/22/2023	pH (field)	7.5	SU
21R	Compliance	E002	08/22/2023	Radium 226 + Radium 228, total	0.855	pCi/L
21R	Compliance	E002	08/22/2023	Selenium, total	0.00098 U	mg/L
21R	Compliance	E002	08/22/2023	Specific Conductance @ 25C (field)	762	micromhos/cm
21R	Compliance	E002	08/22/2023	Sulfate, total	94.0	mg/L
21R	Compliance	E002	08/22/2023	Temperature	16.6	degrees C
21R	Compliance	E002	08/22/2023	Thallium, total	0.00057 U	mg/L
21R	Compliance	E002	08/22/2023	Total Dissolved Solids	730	mg/L
21R	Compliance	E002	08/22/2023	Turbidity, field	34.8	NTU
22	Compliance	E002	08/25/2023	Antimony, total	0.0013 U	mg/L
22	Compliance	E002	08/25/2023	Arsenic, total	0.00023 U	mg/L
22	Compliance	E002	08/25/2023	Barium, total	0.0130	mg/L
22	Compliance	E002	08/25/2023	Beryllium, total	0.00053 U	mg/L
22	Compliance	E002	08/25/2023	Boron, total	0.130	mg/L
22	Compliance	E002	08/25/2023	Cadmium, total	0.0005 UJ	mg/L
22	Compliance	E002	08/25/2023	Calcium, total	23.0	mg/L
22	Compliance	E002	08/25/2023	Chloride, total	89.0	mg/L
22	Compliance	E002	08/25/2023	Chromium, total	0.0011 U	mg/L
22	Compliance	E002	08/25/2023	Cobalt, total	0.00076 J	mg/L
22	Compliance	E002	08/25/2023	Dissolved Oxygen	0.120	mg/L
22	Compliance	E002	08/25/2023	Fluoride, total	0.22 J	mg/L
22	Compliance	E002	08/25/2023	Lead, total	0.00019 U	mg/L
22	Compliance	E002	08/25/2023	Lithium, total	0.0490	mg/L

HENNEPIN, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
22	Compliance	E002	08/25/2023	Mercury, total	0.000079 U	mg/L
22	Compliance	E002	08/25/2023	Molybdenum, total	0.00500	mg/L
22	Compliance	E002	08/25/2023	Oxidation Reduction Potential	77.8	mV
22	Compliance	E002	08/25/2023	pH (field)	7.7	SU
22	Compliance	E002	08/25/2023	Radium 226 + Radium 228, total	0.492	pCi/L
22	Compliance	E002	08/25/2023	Selenium, total	0.0150	mg/L
22	Compliance	E002	08/25/2023	Specific Conductance @ 25C (field)	653	micromhos/cm
22	Compliance	E002	08/25/2023	Sulfate, total	120	mg/L
22	Compliance	E002	08/25/2023	Temperature	16.1	degrees C
22	Compliance	E002	08/25/2023	Thallium, total	0.00057 U	mg/L
22	Compliance	E002	08/25/2023	Total Dissolved Solids	640	mg/L
22	Compliance	E002	08/25/2023	Turbidity, field	4.31	NTU
22D	Compliance	E002	08/22/2023	Antimony, total	0.0013 U	mg/L
22D	Compliance	E002	08/22/2023	Arsenic, total	0.00130	mg/L
22D	Compliance	E002	08/22/2023	Barium, total	0.0660	mg/L
22D	Compliance	E002	08/22/2023	Beryllium, total	0.00053 U	mg/L
22D	Compliance	E002	08/22/2023	Boron, total	1.30	mg/L
22D	Compliance	E002	08/22/2023	Cadmium, total	0.00017 U	mg/L
22D	Compliance	E002	08/22/2023	Calcium, total	120	mg/L
22D	Compliance	E002	08/22/2023	Chloride, total	97.0	mg/L
22D	Compliance	E002	08/22/2023	Chromium, total	0.0011 U	mg/L
22D	Compliance	E002	08/22/2023	Cobalt, total	0.0004 U	mg/L
22D	Compliance	E002	08/22/2023	Dissolved Oxygen	0.910	mg/L
22D	Compliance	E002	08/22/2023	Fluoride, total	0.22 J	mg/L
22D	Compliance	E002	08/22/2023	Lead, total	0.00019 U	mg/L
22D	Compliance	E002	08/22/2023	Lithium, total	0.0170	mg/L
22D	Compliance	E002	08/22/2023	Mercury, total	0.000079 U	mg/L
22D	Compliance	E002	08/22/2023	Molybdenum, total	0.00670	mg/L
22D	Compliance	E002	08/22/2023	Oxidation Reduction Potential	-82.1	mV
22D	Compliance	E002	08/22/2023	pH (field)	7.3	SU
22D	Compliance	E002	08/22/2023	Radium 226 + Radium 228, total	1.26	pCi/L
22D	Compliance	E002	08/22/2023	Selenium, total	0.00098 U	mg/L
22D	Compliance	E002	08/22/2023	Specific Conductance @ 25C (field)	731	micromhos/cm
22D	Compliance	E002	08/22/2023	Sulfate, total	96.0	mg/L
22D	Compliance	E002	08/22/2023	Temperature	18.0	degrees C
22D	Compliance	E002	08/22/2023	Thallium, total	0.00057 U	mg/L
22D	Compliance	E002	08/22/2023	Total Dissolved Solids	690	mg/L
22D	Compliance	E002	08/22/2023	Turbidity, field	24.8	NTU
23	Compliance	E002	08/22/2023	Antimony, total	0.0013 U	mg/L
23	Compliance	E002	08/22/2023	Arsenic, total	0.00089 J	mg/L
23	Compliance	E002	08/22/2023	Barium, total	0.0420	mg/L
23	Compliance	E002	08/22/2023	Beryllium, total	0.00053 U	mg/L
23	Compliance	E002	08/22/2023	Boron, total	8.10	mg/L
23	Compliance	E002	08/22/2023	Cadmium, total	0.00017 U	mg/L
23	Compliance	E002	08/22/2023	Calcium, total	110	mg/L
23	Compliance	E002	08/22/2023	Chloride, total	53.0	mg/L

HENNEPIN, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
23	Compliance	E002	08/22/2023	Chromium, total	0.0011 U	mg/L
23	Compliance	E002	08/22/2023	Cobalt, total	0.00047 J	mg/L
23	Compliance	E002	08/22/2023	Dissolved Oxygen	0.180	mg/L
23	Compliance	E002	08/22/2023	Fluoride, total	0.23 J	mg/L
23	Compliance	E002	08/22/2023	Lead, total	0.00019 U	mg/L
23	Compliance	E002	08/22/2023	Lithium, total	0.00630	mg/L
23	Compliance	E002	08/22/2023	Mercury, total	0.000079 U	mg/L
23	Compliance	E002	08/22/2023	Molybdenum, total	0.0150	mg/L
23	Compliance	E002	08/22/2023	Oxidation Reduction Potential	-124	mV
23	Compliance	E002	08/22/2023	pH (field)	7.4	SU
23	Compliance	E002	08/22/2023	Radium 226 + Radium 228, total	0.658	pCi/L
23	Compliance	E002	08/22/2023	Selenium, total	0.00098 U	mg/L
23	Compliance	E002	08/22/2023	Specific Conductance @ 25C (field)	832	micromhos/cm
23	Compliance	E002	08/22/2023	Sulfate, total	460	mg/L
23	Compliance	E002	08/22/2023	Temperature	15.0	degrees C
23	Compliance	E002	08/22/2023	Thallium, total	0.00057 U	mg/L
23	Compliance	E002	08/22/2023	Total Dissolved Solids	950	mg/L
23	Compliance	E002	08/22/2023	Turbidity, field	9.10	NTU
27	Compliance	E002	08/24/2023	Antimony, total	0.0013 U	mg/L
27	Compliance	E002	08/24/2023	Arsenic, total	0.00100	mg/L
27	Compliance	E002	08/24/2023	Barium, total	0.0840	mg/L
27	Compliance	E002	08/24/2023	Beryllium, total	0.00053 U	mg/L
27	Compliance	E002	08/24/2023	Boron, total	2.00	mg/L
27	Compliance	E002	08/24/2023	Cadmium, total	0.00025 J	mg/L
27	Compliance	E002	08/24/2023	Calcium, total	120	mg/L
27	Compliance	E002	08/24/2023	Chloride, total	91.0	mg/L
27	Compliance	E002	08/24/2023	Chromium, total	0.0011 U	mg/L
27	Compliance	E002	08/24/2023	Cobalt, total	0.00260	mg/L
27	Compliance	E002	08/24/2023	Dissolved Oxygen	0.0700	mg/L
27	Compliance	E002	08/24/2023	Fluoride, total	0.22 J	mg/L
27	Compliance	E002	08/24/2023	Lead, total	0.0002 J+	mg/L
27	Compliance	E002	08/24/2023	Lithium, total	0.0240	mg/L
27	Compliance	E002	08/24/2023	Mercury, total	0.0002 UJ	mg/L
27	Compliance	E002	08/24/2023	Molybdenum, total	0.0047 J	mg/L
27	Compliance	E002	08/24/2023	Oxidation Reduction Potential	-33.7	mV
27	Compliance	E002	08/24/2023	pH (field)	7.3	SU
27	Compliance	E002	08/24/2023	Radium 226 + Radium 228, total	0.589	pCi/L
27	Compliance	E002	08/24/2023	Selenium, total	0.00098 U	mg/L
27	Compliance	E002	08/24/2023	Specific Conductance @ 25C (field)	816	micromhos/cm
27	Compliance	E002	08/24/2023	Sulfate, total	110	mg/L
27	Compliance	E002	08/24/2023	Temperature	12.5	degrees C
27	Compliance	E002	08/24/2023	Thallium, total	0.00057 U	mg/L
27	Compliance	E002	08/24/2023	Total Dissolved Solids	660	mg/L
27	Compliance	E002	08/24/2023	Turbidity, field	48.9	NTU
35	Compliance	E002	08/24/2023	Antimony, total	0.0013 U	mg/L
35	Compliance	E002	08/24/2023	Arsenic, total	0.001 UJ	mg/L

HENNEPIN, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
35	Compliance	E002	08/24/2023	Barium, total	0.0470	mg/L
35	Compliance	E002	08/24/2023	Beryllium, total	0.00053 U	mg/L
35	Compliance	E002	08/24/2023	Boron, total	12.0	mg/L
35	Compliance	E002	08/24/2023	Cadmium, total	0.0005 UJ	mg/L
35	Compliance	E002	08/24/2023	Calcium, total	320	mg/L
35	Compliance	E002	08/24/2023	Chloride, total	37.0	mg/L
35	Compliance	E002	08/24/2023	Chromium, total	0.0011 U	mg/L
35	Compliance	E002	08/24/2023	Cobalt, total	0.00120	mg/L
35	Compliance	E002	08/24/2023	Dissolved Oxygen	1.47	mg/L
35	Compliance	E002	08/24/2023	Fluoride, total	0.2 J	mg/L
35	Compliance	E002	08/24/2023	Lead, total	0.00019 U	mg/L
35	Compliance	E002	08/24/2023	Lithium, total	0.0340	mg/L
35	Compliance	E002	08/24/2023	Mercury, total	0.000079 U	mg/L
35	Compliance	E002	08/24/2023	Molybdenum, total	0.0760	mg/L
35	Compliance	E002	08/24/2023	Oxidation Reduction Potential	162	mV
35	Compliance	E002	08/24/2023	pH (field)	7.0	SU
35	Compliance	E002	08/24/2023	Radium 226 + Radium 228, total	0.626	pCi/L
35	Compliance	E002	08/24/2023	Selenium, total	0.00098 U	mg/L
35	Compliance	E002	08/24/2023	Specific Conductance @ 25C (field)	1,358	micromhos/cm
35	Compliance	E002	08/24/2023	Sulfate, total	890	mg/L
35	Compliance	E002	08/24/2023	Temperature	16.2	degrees C
35	Compliance	E002	08/24/2023	Thallium, total	0.00057 U	mg/L
35	Compliance	E002	08/24/2023	Total Dissolved Solids	1,600	mg/L
35	Compliance	E002	08/24/2023	Turbidity, field	2.81	NTU
49	Compliance	E002	08/25/2023	Antimony, total	0.0013 U	mg/L
49	Compliance	E002	08/25/2023	Arsenic, total	0.00049 J	mg/L
49	Compliance	E002	08/25/2023	Barium, total	0.0620	mg/L
49	Compliance	E002	08/25/2023	Beryllium, total	0.00053 U	mg/L
49	Compliance	E002	08/25/2023	Boron, total	0.690	mg/L
49	Compliance	E002	08/25/2023	Cadmium, total	0.00130	mg/L
49	Compliance	E002	08/25/2023	Calcium, total	99.0	mg/L
49	Compliance	E002	08/25/2023	Chloride, total	95.0	mg/L
49	Compliance	E002	08/25/2023	Chromium, total	0.0011 U	mg/L
49	Compliance	E002	08/25/2023	Cobalt, total	0.00330	mg/L
49	Compliance	E002	08/25/2023	Dissolved Oxygen	0.110	mg/L
49	Compliance	E002	08/25/2023	Fluoride, total	0.24 J	mg/L
49	Compliance	E002	08/25/2023	Lead, total	0.0005 UJ	mg/L
49	Compliance	E002	08/25/2023	Lithium, total	0.0230	mg/L
49	Compliance	E002	08/25/2023	Mercury, total	0.000079 U	mg/L
49	Compliance	E002	08/25/2023	Molybdenum, total	0.0230	mg/L
49	Compliance	E002	08/25/2023	Oxidation Reduction Potential	58.2	mV
49	Compliance	E002	08/25/2023	pH (field)	7.1	SU
49	Compliance	E002	08/25/2023	Radium 226 + Radium 228, total	0.793	pCi/L
49	Compliance	E002	08/25/2023	Selenium, total	0.00098 U	mg/L
49	Compliance	E002	08/25/2023	Specific Conductance @ 25C (field)	698	micromhos/cm
49	Compliance	E002	08/25/2023	Sulfate, total	78.0	mg/L

HENNEPIN, IL

Well ID	Well Type	Event	Date	Parameter	Result	Unit
49	Compliance	E002	08/25/2023	Temperature	15.3	degrees C
49	Compliance	E002	08/25/2023	Thallium, total	0.00057 U	mg/L
49	Compliance	E002	08/25/2023	Total Dissolved Solids	620	mg/L
49	Compliance	E002	08/25/2023	Turbidity, field	124	NTU
50	Compliance	E002	08/25/2023	Antimony, total	0.0013 U	mg/L
50	Compliance	E002	08/25/2023	Arsenic, total	0.001 UJ	mg/L
50	Compliance	E002	08/25/2023	Barium, total	0.0640	mg/L
50	Compliance	E002	08/25/2023	Beryllium, total	0.00053 U	mg/L
50	Compliance	E002	08/25/2023	Boron, total	0.590	mg/L
50	Compliance	E002	08/25/2023	Cadmium, total	0.00140 J+	mg/L
50	Compliance	E002	08/25/2023	Calcium, total	100	mg/L
50	Compliance	E002	08/25/2023	Chloride, total	87.0	mg/L
50	Compliance	E002	08/25/2023	Chromium, total	0.0011 U	mg/L
50	Compliance	E002	08/25/2023	Cobalt, total	0.00350	mg/L
50	Compliance	E002	08/25/2023	Dissolved Oxygen	0.120	mg/L
50	Compliance	E002	08/25/2023	Fluoride, total	0.2 J	mg/L
50	Compliance	E002	08/25/2023	Lead, total	0.0005 UJ	mg/L
50	Compliance	E002	08/25/2023	Lithium, total	0.0250	mg/L
50	Compliance	E002	08/25/2023	Mercury, total	0.000079 U	mg/L
50	Compliance	E002	08/25/2023	Molybdenum, total	0.0250	mg/L
50	Compliance	E002	08/25/2023	Oxidation Reduction Potential	88.0	mV
50	Compliance	E002	08/25/2023	pH (field)	7.5	SU
50	Compliance	E002	08/25/2023	Radium 226 + Radium 228, total	0.752	pCi/L
50	Compliance	E002	08/25/2023	Selenium, total	0.00098 U	mg/L
50	Compliance	E002	08/25/2023	Specific Conductance @ 25C (field)	665	micromhos/cm
50	Compliance	E002	08/25/2023	Sulfate, total	93.0	mg/L
50	Compliance	E002	08/25/2023	Temperature	16.7	degrees C
50	Compliance	E002	08/25/2023	Thallium, total	0.00057 U	mg/L
50	Compliance	E002	08/25/2023	Total Dissolved Solids	610	mg/L
50	Compliance	E002	08/25/2023	Turbidity, field	3.98	NTU
51	Compliance	E002	08/22/2023	Antimony, total	0.0013 U	mg/L
51	Compliance	E002	08/22/2023	Arsenic, total	0.0190	mg/L
51	Compliance	E002	08/22/2023	Barium, total	0.100	mg/L
51	Compliance	E002	08/22/2023	Beryllium, total	0.00053 U	mg/L
51	Compliance	E002	08/22/2023	Boron, total	1.30	mg/L
51	Compliance	E002	08/22/2023	Cadmium, total	0.00017 U	mg/L
51	Compliance	E002	08/22/2023	Calcium, total	110	mg/L
51	Compliance	E002	08/22/2023	Chloride, total	94.0	mg/L
51	Compliance	E002	08/22/2023	Chromium, total	0.0011 J	mg/L
51	Compliance	E002	08/22/2023	Cobalt, total	0.00086 J	mg/L
51	Compliance	E002	08/22/2023	Dissolved Oxygen	0.270	mg/L
51	Compliance	E002	08/22/2023	Fluoride, total	0.23 J	mg/L
51	Compliance	E002	08/22/2023	Lead, total	0.00120 J+	mg/L
51	Compliance	E002	08/22/2023	Lithium, total	0.0250	mg/L
51	Compliance	E002	08/22/2023	Mercury, total	0.000079 U	mg/L
51	Compliance	E002	08/22/2023	Molybdenum, total	0.00890	mg/L

Well ID	Well Type	Event	Date	Parameter	Result	Unit
51	Compliance	E002	08/22/2023	Oxidation Reduction Potential	-129	mV
51	Compliance	E002	08/22/2023	pH (field)	7.4	SU
51	Compliance	E002	08/22/2023	Radium 226 + Radium 228, total	1.03	pCi/L
51	Compliance	E002	08/22/2023	Selenium, total	0.00098 U	mg/L
51	Compliance	E002	08/22/2023	Specific Conductance @ 25C (field)	730	micromhos/cm
51	Compliance	E002	08/22/2023	Sulfate, total	90.0	mg/L
51	Compliance	E002	08/22/2023	Temperature	17.3	degrees C
51	Compliance	E002	08/22/2023	Thallium, total	0.00057 U	mg/L
51	Compliance	E002	08/22/2023	Total Dissolved Solids	680	mg/L
51	Compliance	E002	08/22/2023	Turbidity, field	26.2	NTU

Notes:

C = Celsius

cm = centimeter

mg/L = milligrams per liter

mV = millivolts

NTU = Nephelometric Turbidity Units pCi/L = picocuries per liter

SU = Standard Units

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. J+ = The result is an estimated quantity, but the result may be biased high.

U = The analyte was analyzed for, but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.

UJ = The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
21/21R	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.001	0.006	Standard	No Exceedance
21/21R	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	27	0	CB around T-S line	0.0198	0.01	Standard	Determined
21/21R	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	27	0	CB around linear reg	0.32	2	Standard	No Exceedance
21/21R	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
21/21R	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	28	0	CB around T-S line	2.22	2	Standard	Determined
21/21R	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.002	0.005	Standard	No Exceedance
21/21R	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	97.9	200	Standard	No Exceedance
21/21R	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	27	59	CB around T-S line	0.0015	0.1	Standard	No Exceedance
21/21R	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	27	76	CB around T-S line	0.001	0.006	Standard	No Exceedance
21/21R	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	28	6	CI around median	0.14	4	Standard	No Exceedance
21/21R	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	27	55	CB around T-S line	0.001	0.0075	Standard	No Exceedance
21/21R	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	27	0	CB around linear reg	0.0195	0.04	Standard	No Exceedance
21/21R	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	27	97	CI around median	0.0002	0.002	Standard	No Exceedance
21/21R	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	27	4	CI around mean	0.00656	0.1	Standard	No Exceedance
21/21R	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	30	0	CI around mean	7.3/7.5	6.5/9	Stnd/Standard	No Exceedance
21/21R	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	20	0	CI around mean	0.805	5	Standard	No Exceedance
21/21R	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.001	0.05	Standard	No Exceedance
21/21R	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	55.9	400	Standard	No Exceedance
21/21R	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.002	0.002	Standard	No Exceedance
21/21R	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	28	0	CB around T-S line	607	1,200	Standard	No Exceedance
22	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	30	91	CI around median	0.001	0.006	Standard	No Exceedance
22	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	34	72	CI around median	0.001	0.01	Standard	No Exceedance
22	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	30	0	CI around median	0.0635	2	Standard	No Exceedance
22	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
22	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	35	0	CB around T-S line	3.33	2	Standard	Determined
22	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	30	6	CB around T-S line	0.00587	0.005	Standard	Determined
22	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	37	0	CB around T-S line	87.2	200	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
22	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.005	0.1	Standard	No Exceedance
22	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	30	6	CB around T-S line	0.00215	0.006	Standard	No Exceedance
22	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	30	3	CI around median	0.15	4	Standard	No Exceedance
22	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0075	0.0075	Standard	No Exceedance
22	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	34	0	CB around T-S line	0.0395	0.04	Standard	No Exceedance
22	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
22	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	34	0	CB around T-S line	0.082	0.1	Standard	No Exceedance
22	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	33	0	CB around T-S line	7.4/7.5	6.5/9	Stnd/Standard	No Exceedance
22	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	21	0	CI around mean	0.344	5	Standard	No Exceedance
22	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	30	6	CB around linear reg	0.0161	0.05	Standard	No Exceedance
22	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	37	0	CB around linear reg	110	400	Standard	No Exceedance
22	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	30	94	CB around T-S line	0.002	0.002	Standard	No Exceedance
22	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	37	0	CB around linear reg	593	1,200	Standard	No Exceedance
22D	UA	E001	Antimony, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.006	Standard	No Exceedance
22D	UA	E001	Arsenic, total	mg/L	09/17/19 - 05/31/23	14	7	CI around median	0.0012	0.01	Standard	No Exceedance
22D	UA	E001	Barium, total	mg/L	09/17/19 - 05/31/23	14	0	CB around T-S line	0.0606	2	Standard	No Exceedance
22D	UA	E001	Beryllium, total	mg/L	09/17/19 - 05/31/23	13	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
22D	UA	E001	Boron, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	1.85	2	Standard	No Exceedance
22D	UA	E001	Cadmium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.002	0.005	Standard	No Exceedance
22D	UA	E001	Chloride, total	mg/L	09/17/19 - 05/31/23	14	0	CB around linear reg	106	200	Standard	No Exceedance
22D	UA	E001	Chromium, total	mg/L	09/17/19 - 05/31/23	14	86	CI around median	0.0015	0.1	Standard	No Exceedance
22D	UA	E001	Cobalt, total	mg/L	09/17/19 - 05/31/23	14	93	CI around median	0.001	0.006	Standard	No Exceedance
22D	UA	E001	Fluoride, total	mg/L	09/17/19 - 05/31/23	14	7	CI around median	0.11	4	Standard	No Exceedance
22D	UA	E001	Lead, total	mg/L	09/17/19 - 05/31/23	14	93	CI around median	0.001	0.0075	Standard	No Exceedance
22D	UA	E001	Lithium, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	0.0144	0.04	Standard	No Exceedance
22D	UA	E001	Mercury, total	mg/L	12/11/19 - 05/31/23	13	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
22D	UA	E001	Molybdenum, total	mg/L	09/17/19 - 05/31/23	14	7	CI around mean	0.00654	0.1	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
22D	UA	E001	pH (field)	SU	09/17/19 - 05/31/23	17	0	CI around mean	7.2/7.3	6.5/9	Stnd/Standard	No Exceedance
22D	UA	E001	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 05/31/23	11	0	CI around mean	0.518	5	Standard	No Exceedance
22D	UA	E001	Selenium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.05	Standard	No Exceedance
22D	UA	E001	Sulfate, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	103	400	Standard	No Exceedance
22D	UA	E001	Thallium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.002	0.002	Standard	No Exceedance
22D	UA	E001	Total Dissolved Solids	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	595	1,200	Standard	No Exceedance
23	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.001	0.006	Standard	No Exceedance
23	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	34	94	CB around T-S line	0.001	0.01	Standard	No Exceedance
23	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	30	0	CB around T-S line	0.0365	2	Standard	No Exceedance
23	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
23	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	35	0	CB around linear reg	8.74	2	Standard	Determined
23	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.002	0.005	Standard	No Exceedance
23	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	37	1	CB around T-S line	50.6	200	Standard	No Exceedance
23	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.005	0.1	Standard	No Exceedance
23	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.001	0.006	Standard	No Exceedance
23	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	30	3	CI around median	0.15	4	Standard	No Exceedance
23	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0075	0.0075	Standard	No Exceedance
23	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	34	6	CI around median	0.0048	0.04	Standard	No Exceedance
23	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
23	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	34	0	CI around median	0.0146	0.1	Standard	No Exceedance
23	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	32	0	CI around mean	7.4/7.5	6.5/9	Stnd/Standard	No Exceedance
23	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	21	0	CI around mean	0.253	5	Standard	No Exceedance
23	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.001	0.05	Standard	No Exceedance
23	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	37	0	CI around mean	422	400	Standard	Determined
23	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.002	0.002	Standard	No Exceedance
23	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	37	0	CI around mean	883	1,200	Standard	No Exceedance
24/51	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.001	0.006	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

HENNEPIN,	IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
24/51	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	32	0	CI around mean	0.0204	0.01	Standard	Determined
24/51	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	28	0	CB around linear reg	0.112	2	Standard	No Exceedance
24/51	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
24/51	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	33	0	CB around linear reg	1.52	2	Standard	No Exceedance
24/51	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.002	0.005	Standard	No Exceedance
24/51	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	35	0	CB around linear reg	108	200	Standard	No Exceedance
24/51	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	28	77	CB around T-S line	0.0015	0.1	Standard	No Exceedance
24/51	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	28	73	CI around median	0.001	0.006	Standard	No Exceedance
24/51	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	28	3	CB around T-S line	0.114	4	Standard	No Exceedance
24/51	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	28	70	CI around median	0.001	0.0075	Standard	No Exceedance
24/51	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	32	0	CB around T-S line	0.0224	0.04	Standard	No Exceedance
24/51	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
24/51	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	32	3	CI around mean	0.00992	0.1	Standard	No Exceedance
24/51	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	30	0	CB around linear reg	7.1/7.4	6.5/9	Stnd/Standard	No Exceedance
24/51	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	20	0	CB around linear reg	1.12	5	Standard	No Exceedance
24/51	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.001	0.05	Standard	No Exceedance
24/51	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	35	0	CB around linear reg	86	400	Standard	No Exceedance
24/51	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.002	0.002	Standard	No Exceedance
24/51	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	35	0	CI around mean	616	1,200	Standard	No Exceedance
27	UA	E001	Antimony, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.001	0.006	Standard	No Exceedance
27	UA	E001	Arsenic, total	mg/L	09/12/18 - 05/31/23	17	68	CI around median	0.001	0.01	Standard	No Exceedance
27	UA	E001	Barium, total	mg/L	09/12/18 - 05/31/23	17	0	CI around mean	0.0835	2	Standard	No Exceedance
27	UA	E001	Beryllium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
27	UA	E001	Boron, total	mg/L	09/12/18 - 05/31/23	17	0	CB around linear reg	1.38	2	Standard	No Exceedance
27	UA	E001	Cadmium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.002	0.005	Standard	No Exceedance
27	UA	E001	Chloride, total	mg/L	03/08/16 - 05/31/23	22	0	CB around linear reg	105	200	Standard	No Exceedance
27	UA	E001	Chromium, total	mg/L	09/12/18 - 05/31/23	17	79	CI around median	0.0015	0.1	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
27	UA	E001	Cobalt, total	mg/L	09/12/18 - 05/31/23	17	10	CI around mean	0.00185	0.006	Standard	No Exceedance
27	UA	E001	Fluoride, total	mg/L	09/12/18 - 05/31/23	17	0	CI around median	0.12	4	Standard	No Exceedance
27	UA	E001	Lead, total	mg/L	09/12/18 - 05/31/23	17	58	CI around median	0.001	0.0075	Standard	No Exceedance
27	UA	E001	Lithium, total	mg/L	09/12/18 - 05/31/23	17	0	CI around mean	0.0212	0.04	Standard	No Exceedance
27	UA	E001	Mercury, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
27	UA	E001	Molybdenum, total	mg/L	09/12/18 - 05/31/23	17	6	CI around mean	0.00434	0.1	Standard	No Exceedance
27	UA	E001	pH (field)	SU	03/08/16 - 05/31/23	22	0	CB around linear reg	7.0/7.2	6.5/9	Stnd/Standard	No Exceedance
27	UA	E001	Radium 226 + Radium 228, total	pCi/L	09/12/18 - 05/31/23	11	0	CI around geomean	0.189	5	Standard	No Exceedance
27	UA	E001	Selenium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.001	0.05	Standard	No Exceedance
27	UA	E001	Sulfate, total	mg/L	03/08/16 - 05/31/23	22	0	CI around geomean	121	400	Standard	No Exceedance
27	UA	E001	Thallium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.002	0.002	Standard	No Exceedance
27	UA	E001	Total Dissolved Solids	mg/L	03/08/16 - 05/31/23	22	0	CI around median	638	1,200	Standard	No Exceedance
35	UA	E001	Antimony, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.001	0.006	Standard	No Exceedance
35	UA	E001	Arsenic, total	mg/L	12/09/15 - 05/31/23	29	79	CI around median	0.001	0.01	Standard	No Exceedance
35	UA	E001	Barium, total	mg/L	12/09/15 - 05/31/23	29	0	CI around geomean	0.0394	2	Standard	No Exceedance
35	UA	E001	Beryllium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
35	UA	E001	Boron, total	mg/L	12/09/15 - 05/31/23	30	0	CB around linear reg	12.4	2	Standard	Determined
35	UA	E001	Cadmium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.002	0.005	Standard	No Exceedance
35	UA	E001	Chloride, total	mg/L	12/09/15 - 05/31/23	30	0	CI around mean	38.5	200	Standard	No Exceedance
35	UA	E001	Chromium, total	mg/L	12/09/15 - 05/31/23	29	97	CB around T-S line	0.0015	0.1	Standard	No Exceedance
35	UA	E001	Cobalt, total	mg/L	12/09/15 - 05/31/23	29	45	CB around T-S line	0.001	0.006	Standard	No Exceedance
35	UA	E001	Fluoride, total	mg/L	12/09/15 - 05/31/23	30	0	CI around mean	0.175	4	Standard	No Exceedance
35	UA	E001	Lead, total	mg/L	12/09/15 - 05/31/23	29	90	CI around median	0.001	0.0075	Standard	No Exceedance
35	UA	E001	Lithium, total	mg/L	12/09/15 - 05/31/23	29	0	CI around mean	0.0245	0.04	Standard	No Exceedance
35	UA	E001	Mercury, total	mg/L	12/09/15 - 05/31/23	28	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
35	UA	E001	Molybdenum, total	mg/L	12/09/15 - 05/31/23	29	0	CI around mean	0.0664	0.1	Standard	No Exceedance
35	UA	E001	pH (field)	SU	12/09/15 - 05/31/23	30	0	CB around linear reg	6.7/7.0	6.5/9	Stnd/Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

Н	Εľ	١N	EΡ	IN	, I	

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
35	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/09/15 - 05/31/23	22	0	CI around median	0.25	5	Standard	No Exceedance
35	UA	E001	Selenium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.001	0.05	Standard	No Exceedance
35	UA	E001	Sulfate, total	mg/L	12/09/15 - 05/31/23	30	0	CB around linear reg	618	400	Standard	Determined
35	UA	E001	Thallium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.002	0.002	Standard	No Exceedance
35	UA	E001	Total Dissolved Solids	mg/L	12/09/15 - 05/31/23	30	0	CB around linear reg	1,200	1,200	Standard	No Exceedance
49	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.001	0.006	Standard	No Exceedance
49	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	29	97	CI around median	0.001	0.01	Standard	No Exceedance
49	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	29	0	CB around linear reg	0.0617	2	Standard	No Exceedance
49	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
49	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	0.467	2	Standard	No Exceedance
49	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	29	31	CB around linear reg	0.00165	0.005	Standard	No Exceedance
49	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	30	0	CI around median	100	200	Standard	No Exceedance
49	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	29	97	CB around T-S line	0.0015	0.1	Standard	No Exceedance
49	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	29	0	CI around mean	0.00456	0.006	Standard	No Exceedance
49	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	30	0	CI around mean	0.148	4	Standard	No Exceedance
49	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	29	93	CB around T-S line	0.001	0.0075	Standard	No Exceedance
49	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	29	0	CI around mean	0.024	0.04	Standard	No Exceedance
49	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
49	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	29	0	CB around linear reg	0.0233	0.1	Standard	No Exceedance
49	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	31	0	CB around linear reg	6.9/7.1	6.5/9	Stnd/Standard	No Exceedance
49	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	22	0	CI around mean	0.29	5	Standard	No Exceedance
49	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.001	0.05	Standard	No Exceedance
49	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	70.1	400	Standard	No Exceedance
49	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.002	0.002	Standard	No Exceedance
49	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	575	1,200	Standard	No Exceedance
50	UA	E001	Antimony, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.006	Standard	No Exceedance
50	UA	E001	Arsenic, total	mg/L	09/17/19 - 05/31/23	14	93	CI around median	0.001	0.01	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Exceedance Type
50	UA	E001	Barium, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	0.0899	2	Standard	No Exceedance
50	UA	E001	Beryllium, total	mg/L	09/17/19 - 05/31/23	13	100	All ND - Last	0.0005	0.004	Standard	No Exceedance
50	UA	E001	Boron, total	mg/L	09/17/19 - 05/31/23	14	0	CI around median	0.69	2	Standard	No Exceedance
50	UA	E001	Cadmium, total	mg/L	09/17/19 - 05/31/23	14	7	CI around median	0.0011	0.005	Standard	No Exceedance
50	UA	E001	Chloride, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	90.1	200	Standard	No Exceedance
50	UA	E001	Chromium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.005	0.1	Standard	No Exceedance
50	UA	E001	Cobalt, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	0.00441	0.006	Standard	No Exceedance
50	UA	E001	Fluoride, total	mg/L	09/17/19 - 05/31/23	14	21	CI around mean	0.0987	4	Standard	No Exceedance
50	UA	E001	Lead, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.0075	0.0075	Standard	No Exceedance
50	UA	E001	Lithium, total	mg/L	09/17/19 - 05/31/23	14	0	CI around median	0.0197	0.04	Standard	No Exceedance
50	UA	E001	Mercury, total	mg/L	12/11/19 - 05/31/23	13	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
50	UA	E001	Molybdenum, total	mg/L	09/17/19 - 05/31/23	14	0	CB around T-S line	0.0301	0.1	Standard	No Exceedance
50	UA	E001	pH (field)	SU	09/17/19 - 05/31/23	17	0	CI around median	7.2/7.4	6.5/9	Stnd/Standard	No Exceedance
50	UA	E001	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 05/31/23	10	0	CI around mean	0.498	5	Standard	No Exceedance
50	UA	E001	Selenium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.05	Standard	No Exceedance
50	UA	E001	Sulfate, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	85	400	Standard	No Exceedance
50	UA	E001	Thallium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.002	0.002	Standard	No Exceedance
50	UA	E001	Total Dissolved Solids	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	606	1,200	Standard	No Exceedance

TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 2, 2023845 QUARTERLY REPORTHENNEPIN POWER PLANTWEST ASH POND SYSTEMHENNEPIN, IL

Notes:

Exceedance Type:

No Exceedance: No exceedance of the GWPS and no resample was collected.

Determined: An exceedance was determined without comparison to a resample.

HSU = hydrostratigraphic unit:

UA = Uppermost Aquifer

mg/L = milligrams per liter

ND = non-detect

pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around T-S line = Confidence band around Thiel-Sen line

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with Statistical Analysis Plan using constituent concentrations observed at monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits GWPS = Groundwater Protection Standard

GWPS Source:

Standard = standard specified in 35 I.A.C. § 845.600(a)(1)

Background = background concentration (see cover page for additional information)

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

Η	ΕN	IN	EΡ	IN	, I	L	

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
21/21R	UA	E002	Antimony, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.003	0.006	Standard	No Exceedance
21/21R	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/22/23	28	0	CB around T-S line	0.0194	0.010	Standard	Exceedance
21/21R	UA	E002	Barium, total	mg/L	12/10/15 - 08/22/23	28	0	CB around linear reg	0.318	2.0	Standard	No Exceedance
21/21R	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.001	0.004	Standard	No Exceedance
21/21R	UA	E002	Boron, total	mg/L	12/10/15 - 08/22/23	29	0	CB around T-S line	1.96	2	Standard	No Exceedance
21/21R	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
21/21R	UA	E002	Chloride, total	mg/L	12/10/15 - 08/22/23	31	0	CB around linear reg	98.6	200	Standard	No Exceedance
21/21R	UA	E002	Chromium, total	mg/L	12/10/15 - 08/22/23	28	60	CB around T-S line	0.0015	0.1	Standard	No Exceedance
21/21R	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/22/23	28	73	CB around T-S line	0.001	0.006	Standard	No Exceedance
21/21R	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/22/23	29	9	CI around median	0.14	4.0	Standard	No Exceedance
21/21R	UA	E002	Lead, total	mg/L	12/10/15 - 08/22/23	28	53	CB around T-S line	0.00111	0.0075	Standard	No Exceedance
21/21R	UA	E002	Lithium, total	mg/L	12/10/15 - 08/22/23	28	0	CB around linear reg	0.0203	0.04	Standard	No Exceedance
21/21R	UA	E002	Mercury, total	mg/L	12/10/15 - 08/22/23	28	97	CI around median	0.0002	0.002	Standard	No Exceedance
21/21R	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/22/23	28	4	CI around mean	0.00666	0.1	Standard	No Exceedance
21/21R	UA	E002	pH (field)	SU	12/10/15 - 08/22/23	31	0	CI around mean	7.3/7.5	6.5/9.0	Standard/Standard	No Exceedance
21/21R	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/22/23	21	0	CI around mean	0.807	5	Standard	No Exceedance
21/21R	UA	E002	Selenium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
21/21R	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/22/23	31	0	CB around linear reg	56.5	400	Standard	No Exceedance
21/21R	UA	E002	Thallium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.002	0.002	Standard	No Exceedance
21/21R	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/22/23	29	0	CB around T-S line	622	1,200	Standard	No Exceedance
22	UA	E002	Antimony, total	mg/L	12/10/15 - 08/25/23	31	91	CI around median	0.001	0.006	Standard	No Exceedance
22	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/25/23	35	73	CI around median	0.001	0.010	Standard	No Exceedance
22	UA	E002	Barium, total	mg/L	12/10/15 - 08/25/23	31	0	CI around median	0.0635	2.0	Standard	No Exceedance
22	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/25/23	31	100	All ND - Last	0.001	0.004	Standard	No Exceedance
22	UA	E002	Boron, total	mg/L	12/10/15 - 08/25/23	36	0	CB around T-S line	3.15	2	Standard	Exceedance
22	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/25/23	31	9	CB around T-S line	0.00567	0.005	Standard	Exceedance
22	UA	E002	Chloride, total	mg/L	12/10/15 - 08/25/23	38	0	CB around T-S line	89.1	200	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
22	UA	E002	Chromium, total	mg/L	12/10/15 - 08/25/23	31	100	All ND - Last	0.005	0.1	Standard	No Exceedance
22	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/25/23	31	9	CI around mean	0.00191	0.006	Standard	No Exceedance
22	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/25/23	31	6	CI around median	0.15	4.0	Standard	No Exceedance
22	UA	E002	Lead, total	mg/L	12/10/15 - 08/25/23	31	100	All ND - Last	0.0005	0.0075	Standard	No Exceedance
22	UA	E002	Lithium, total	mg/L	12/10/15 - 08/25/23	35	0	CB around T-S line	0.0405	0.04	Standard	Exceedance
22	UA	E002	Mercury, total	mg/L	12/10/15 - 08/25/23	29	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
22	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/25/23	35	0	CB around T-S line	0.0754	0.1	Standard	No Exceedance
22	UA	E002	pH (field)	SU	12/10/15 - 08/25/23	34	0	CI around mean	7.5/7.7	6.5/9.0	Standard/Standard	No Exceedance
22	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/25/23	22	0	CI around mean	0.352	5	Standard	No Exceedance
22	UA	E002	Selenium, total	mg/L	12/10/15 - 08/25/23	31	6	CB around linear reg	0.0158	0.05	Standard	No Exceedance
22	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/25/23	38	0	CB around linear reg	106	400	Standard	No Exceedance
22	UA	E002	Thallium, total	mg/L	12/10/15 - 08/25/23	31	94	CB around T-S line	0.002	0.002	Standard	No Exceedance
22	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/25/23	38	0	CB around linear reg	591	1,200	Standard	No Exceedance
22D	UA	E002	Antimony, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.003	0.006	Standard	No Exceedance
22D	UA	E002	Arsenic, total	mg/L	09/17/19 - 08/22/23	15	7	CI around median	0.0012	0.010	Standard	No Exceedance
22D	UA	E002	Barium, total	mg/L	09/17/19 - 08/22/23	15	0	CB around T-S line	0.0653	2.0	Standard	No Exceedance
22D	UA	E002	Beryllium, total	mg/L	09/17/19 - 08/22/23	14	100	All ND - Last	0.001	0.004	Standard	No Exceedance
22D	UA	E002	Boron, total	mg/L	09/17/19 - 08/22/23	15	0	CB around linear reg	1.22	2	Standard	No Exceedance
22D	UA	E002	Cadmium, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
22D	UA	E002	Chloride, total	mg/L	09/17/19 - 08/22/23	15	0	CB around linear reg	101	200	Standard	No Exceedance
22D	UA	E002	Chromium, total	mg/L	09/17/19 - 08/22/23	15	87	CI around median	0.0015	0.1	Standard	No Exceedance
22D	UA	E002	Cobalt, total	mg/L	09/17/19 - 08/22/23	15	93	CI around median	0.001	0.006	Standard	No Exceedance
22D	UA	E002	Fluoride, total	mg/L	09/17/19 - 08/22/23	15	13	CI around median	0.11	4.0	Standard	No Exceedance
22D	UA	E002	Lead, total	mg/L	09/17/19 - 08/22/23	15	93	CI around median	0.001	0.0075	Standard	No Exceedance
22D	UA	E002	Lithium, total	mg/L	09/17/19 - 08/22/23	15	0	CI around mean	0.0145	0.04	Standard	No Exceedance
22D	UA	E002	Mercury, total	mg/L	12/11/19 - 08/22/23	14	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
22D	UA	E002	Molybdenum, total	mg/L	09/17/19 - 08/22/23	15	7	CI around mean	0.00655	0.1	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
22D	UA	E002	pH (field)	SU	09/17/19 - 08/22/23	18	0	CI around mean	7.2/7.3	6.5/9.0	Standard/Standard	No Exceedance
22D	UA	E002	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 08/22/23	12	0	CI around mean	0.589	5	Standard	No Exceedance
22D	UA	E002	Selenium, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
22D	UA	E002	Sulfate, total	mg/L	09/17/19 - 08/22/23	15	0	CI around mean	102	400	Standard	No Exceedance
22D	UA	E002	Thallium, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.002	0.002	Standard	No Exceedance
22D	UA	E002	Total Dissolved Solids	mg/L	09/17/19 - 08/22/23	15	0	CI around mean	599	1,200	Standard	No Exceedance
23	UA	E002	Antimony, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.003	0.006	Standard	No Exceedance
23	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/22/23	35	95	CB around T-S line	0.001	0.010	Standard	No Exceedance
23	UA	E002	Barium, total	mg/L	12/10/15 - 08/22/23	31	0	CB around T-S line	0.0352	2.0	Standard	No Exceedance
23	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.001	0.004	Standard	No Exceedance
23	UA	E002	Boron, total	mg/L	12/10/15 - 08/22/23	36	0	CB around T-S line	8.3	2	Standard	Exceedance
23	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
23	UA	E002	Chloride, total	mg/L	12/10/15 - 08/22/23	38	1	CB around T-S line	51.7	200	Standard	No Exceedance
23	UA	E002	Chromium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.005	0.1	Standard	No Exceedance
23	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.001	0.006	Standard	No Exceedance
23	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/22/23	31	6	CI around median	0.15	4.0	Standard	No Exceedance
23	UA	E002	Lead, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.0005	0.0075	Standard	No Exceedance
23	UA	E002	Lithium, total	mg/L	12/10/15 - 08/22/23	35	6	CI around mean	0.00458	0.04	Standard	No Exceedance
23	UA	E002	Mercury, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
23	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/22/23	35	0	CI around median	0.0146	0.1	Standard	No Exceedance
23	UA	E002	pH (field)	SU	12/10/15 - 08/22/23	33	0	CI around mean	7.4/7.5	6.5/9.0	Standard/Standard	No Exceedance
23	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/22/23	22	0	CI around mean	0.27	5	Standard	No Exceedance
23	UA	E002	Selenium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
23	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/22/23	38	0	CI around mean	423	400	Standard	Exceedance
23	UA	E002	Thallium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.002	0.002	Standard	No Exceedance
23	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/22/23	38	0	CI around mean	885	1,200	Standard	No Exceedance
24/51	UA	E002	Antimony, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.003	0.006	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
24/51	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/22/23	33	0	CI around mean	0.0204	0.010	Standard	Exceedance
24/51	UA	E002	Barium, total	mg/L	12/10/15 - 08/22/23	29	0	CB around linear reg	0.11	2.0	Standard	No Exceedance
24/51	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.001	0.004	Standard	No Exceedance
24/51	UA	E002	Boron, total	mg/L	12/10/15 - 08/22/23	34	0	CB around linear reg	1.43	2	Standard	No Exceedance
24/51	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
24/51	UA	E002	Chloride, total	mg/L	12/10/15 - 08/22/23	36	0	CB around linear reg	107	200	Standard	No Exceedance
24/51	UA	E002	Chromium, total	mg/L	12/10/15 - 08/22/23	29	77	CB around T-S line	0.0015	0.1	Standard	No Exceedance
24/51	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/22/23	29	74	CI around median	0.001	0.006	Standard	No Exceedance
24/51	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/22/23	29	6	CI around median	0.14	4.0	Standard	No Exceedance
24/51	UA	E002	Lead, total	mg/L	12/10/15 - 08/22/23	29	68	CI around median	0.001	0.0075	Standard	No Exceedance
24/51	UA	E002	Lithium, total	mg/L	12/10/15 - 08/22/23	33	0	CB around T-S line	0.0229	0.04	Standard	No Exceedance
24/51	UA	E002	Mercury, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
24/51	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/22/23	33	3	CI around mean	0.00988	0.1	Standard	No Exceedance
24/51	UA	E002	pH (field)	SU	12/10/15 - 08/22/23	31	0	CB around linear reg	7.1/7.4	6.5/9.0	Standard/Standard	No Exceedance
24/51	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/22/23	21	0	CB around linear reg	1.07	5	Standard	No Exceedance
24/51	UA	E002	Selenium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
24/51	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/22/23	36	0	CB around linear reg	84.4	400	Standard	No Exceedance
24/51	UA	E002	Thallium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.002	0.002	Standard	No Exceedance
24/51	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/22/23	36	0	CI around mean	618	1,200	Standard	No Exceedance
27	UA	E002	Antimony, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.003	0.006	Standard	No Exceedance
27	UA	E002	Arsenic, total	mg/L	09/12/18 - 08/24/23	18	65	CI around median	0.001	0.010	Standard	No Exceedance
27	UA	E002	Barium, total	mg/L	09/12/18 - 08/24/23	18	0	CI around geomean	0.0837	2.0	Standard	No Exceedance
27	UA	E002	Beryllium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.001	0.004	Standard	No Exceedance
27	UA	E002	Boron, total	mg/L	09/12/18 - 08/24/23	18	0	CB around linear reg	1.36	2	Standard	No Exceedance
27	UA	E002	Cadmium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
27	UA	E002	Chloride, total	mg/L	03/08/16 - 08/24/23	23	0	CB around linear reg	102	200	Standard	No Exceedance
27	UA	E002	Chromium, total	mg/L	09/12/18 - 08/24/23	18	80	CI around median	0.0015	0.1	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
27	UA	E002	Cobalt, total	mg/L	09/12/18 - 08/24/23	18	10	CI around mean	0.00189	0.006	Standard	No Exceedance
27	UA	E002	Fluoride, total	mg/L	09/12/18 - 08/24/23	18	4	CI around median	0.12	4.0	Standard	No Exceedance
27	UA	E002	Lead, total	mg/L	09/12/18 - 08/24/23	18	60	CI around median	0.001	0.0075	Standard	No Exceedance
27	UA	E002	Lithium, total	mg/L	09/12/18 - 08/24/23	18	0	CI around mean	0.0213	0.04	Standard	No Exceedance
27	UA	E002	Mercury, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
27	UA	E002	Molybdenum, total	mg/L	09/12/18 - 08/24/23	18	11	CI around mean	0.00413	0.1	Standard	No Exceedance
27	UA	E002	pH (field)	SU	03/08/16 - 08/24/23	23	0	CI around mean	7.1/7.2	6.5/9.0	Standard/Standard	No Exceedance
27	UA	E002	Radium 226 + Radium 228, total	pCi/L	09/12/18 - 08/24/23	12	0	CI around geomean	0.211	5	Standard	No Exceedance
27	UA	E002	Selenium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
27	UA	E002	Sulfate, total	mg/L	03/08/16 - 08/24/23	23	0	CB around linear reg	87.9	400	Standard	No Exceedance
27	UA	E002	Thallium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.002	0.002	Standard	No Exceedance
27	UA	E002	Total Dissolved Solids	mg/L	03/08/16 - 08/24/23	23	0	CI around median	638	1,200	Standard	No Exceedance
35	UA	E002	Antimony, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.003	0.006	Standard	No Exceedance
35	UA	E002	Arsenic, total	mg/L	12/09/15 - 08/24/23	30	80	CI around median	0.001	0.010	Standard	No Exceedance
35	UA	E002	Barium, total	mg/L	12/09/15 - 08/24/23	30	0	CI around geomean	0.0396	2.0	Standard	No Exceedance
35	UA	E002	Beryllium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.001	0.004	Standard	No Exceedance
35	UA	E002	Boron, total	mg/L	12/09/15 - 08/24/23	31	0	CB around linear reg	12.3	2	Standard	Exceedance
35	UA	E002	Cadmium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.0005	0.005	Standard	No Exceedance
35	UA	E002	Chloride, total	mg/L	12/09/15 - 08/24/23	31	0	CI around mean	38.4	200	Standard	No Exceedance
35	UA	E002	Chromium, total	mg/L	12/09/15 - 08/24/23	30	97	CB around T-S line	0.0015	0.1	Standard	No Exceedance
35	UA	E002	Cobalt, total	mg/L	12/09/15 - 08/24/23	30	43	CI around median	0.001	0.006	Standard	No Exceedance
35	UA	E002	Fluoride, total	mg/L	12/09/15 - 08/24/23	31	3	CI around median	0.17	4.0	Standard	No Exceedance
35	UA	E002	Lead, total	mg/L	12/09/15 - 08/24/23	30	90	CI around median	0.001	0.0075	Standard	No Exceedance
35	UA	E002	Lithium, total	mg/L	12/09/15 - 08/24/23	30	0	CI around mean	0.0248	0.04	Standard	No Exceedance
35	UA	E002	Mercury, total	mg/L	12/09/15 - 08/24/23	29	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
35	UA	E002	Molybdenum, total	mg/L	12/09/15 - 08/24/23	30	0	CI around mean	0.0668	0.1	Standard	No Exceedance
35	UA	E002	pH (field)	SU	12/09/15 - 08/24/23	31	0	CB around linear reg	6.8/7.0	6.5/9.0	Standard/Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
35	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/09/15 - 08/24/23	23	0	CI around median	0.25	5	Standard	No Exceedance
35	UA	E002	Selenium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
35	UA	E002	Sulfate, total	mg/L	12/09/15 - 08/24/23	31	0	CB around linear reg	649	400	Standard	Exceedance
35	UA	E002	Thallium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.002	0.002	Standard	No Exceedance
35	UA	E002	Total Dissolved Solids	mg/L	12/09/15 - 08/24/23	31	0	CB around linear reg	1,250	1,200	Standard	Exceedance
49	UA	E002	Antimony, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.003	0.006	Standard	No Exceedance
49	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/25/23	30	97	CI around median	0.001	0.010	Standard	No Exceedance
49	UA	E002	Barium, total	mg/L	12/10/15 - 08/25/23	30	0	CB around T-S line	0.0615	2.0	Standard	No Exceedance
49	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.001	0.004	Standard	No Exceedance
49	UA	E002	Boron, total	mg/L	12/10/15 - 08/25/23	31	0	CB around linear reg	0.457	2	Standard	No Exceedance
49	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/25/23	30	30	CB around linear reg	0.00159	0.005	Standard	No Exceedance
49	UA	E002	Chloride, total	mg/L	12/10/15 - 08/25/23	31	0	CI around median	100	200	Standard	No Exceedance
49	UA	E002	Chromium, total	mg/L	12/10/15 - 08/25/23	30	97	CB around T-S line	0.0015	0.1	Standard	No Exceedance
49	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/25/23	30	0	CI around mean	0.0045	0.006	Standard	No Exceedance
49	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/25/23	31	3	CI around median	0.15	4.0	Standard	No Exceedance
49	UA	E002	Lead, total	mg/L	12/10/15 - 08/25/23	30	93	CI around median	0.001	0.0075	Standard	No Exceedance
49	UA	E002	Lithium, total	mg/L	12/10/15 - 08/25/23	30	0	CI around mean	0.024	0.04	Standard	No Exceedance
49	UA	E002	Mercury, total	mg/L	12/10/15 - 08/25/23	29	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
49	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/25/23	30	0	CB around linear reg	0.0223	0.1	Standard	No Exceedance
49	UA	E002	pH (field)	SU	12/10/15 - 08/25/23	32	0	CI around mean	7.1/7.2	6.5/9.0	Standard/Standard	No Exceedance
49	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/25/23	23	0	CI around mean	0.31	5	Standard	No Exceedance
49	UA	E002	Selenium, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
49	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/25/23	31	0	CB around linear reg	69.6	400	Standard	No Exceedance
49	UA	E002	Thallium, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.002	0.002	Standard	No Exceedance
49	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/25/23	31	0	CB around linear reg	576	1,200	Standard	No Exceedance
50	UA	E002	Antimony, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.003	0.006	Standard	No Exceedance
50	UA	E002	Arsenic, total	mg/L	09/17/19 - 08/25/23	15	93	CI around median	0.001	0.010	Standard	No Exceedance

845 QUARTERLY REPORT HENNEPIN POWER PLANT

WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	GWPS	GWPS Source	Compliance Result
50	UA	E002	Barium, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	0.0859	2.0	Standard	No Exceedance
50	UA	E002	Beryllium, total	mg/L	09/17/19 - 08/25/23	14	100	All ND - Last	0.001	0.004	Standard	No Exceedance
50	UA	E002	Boron, total	mg/L	09/17/19 - 08/25/23	15	0	CI around geomean	0.682	2	Standard	No Exceedance
50	UA	E002	Cadmium, total	mg/L	09/17/19 - 08/25/23	15	7	CI around median	0.0011	0.005	Standard	No Exceedance
50	UA	E002	Chloride, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	89.7	200	Standard	No Exceedance
50	UA	E002	Chromium, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.005	0.1	Standard	No Exceedance
50	UA	E002	Cobalt, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	0.0043	0.006	Standard	No Exceedance
50	UA	E002	Fluoride, total	mg/L	09/17/19 - 08/25/23	15	27	CB around T-S line	0.11	4.0	Standard	No Exceedance
50	UA	E002	Lead, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.0005	0.0075	Standard	No Exceedance
50	UA	E002	Lithium, total	mg/L	09/17/19 - 08/25/23	15	0	CI around median	0.0197	0.04	Standard	No Exceedance
50	UA	E002	Mercury, total	mg/L	12/11/19 - 08/25/23	14	100	All ND - Last	0.0002	0.002	Standard	No Exceedance
50	UA	E002	Molybdenum, total	mg/L	09/17/19 - 08/25/23	15	0	CI around geomean	0.0276	0.1	Standard	No Exceedance
50	UA	E002	pH (field)	SU	09/17/19 - 08/25/23	18	0	CB around linear reg	7.2/7.6	6.5/9.0	Standard/Standard	No Exceedance
50	UA	E002	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 08/25/23	11	0	CI around mean	0.527	5	Standard	No Exceedance
50	UA	E002	Selenium, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.0025	0.05	Standard	No Exceedance
50	UA	E002	Sulfate, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	85.7	400	Standard	No Exceedance
50	UA	E002	Thallium, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.002	0.002	Standard	No Exceedance
50	UA	E002	Total Dissolved Solids	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	607	1,200	Standard	No Exceedance

TABLE 2.COMPARISON OF STATISTICAL RESULTS TO GWPS - QUARTER 3, 2023845 QUARTERLY REPORTHENNEPIN POWER PLANTWEST ASH POND SYSTEMHENNEPIN, IL

Notes:

Compliance Result:

No Exceedance: the statistical result did not exceed the GWPS.

Exceedance: The statistical result exceeded the GWPS.

HSU = hydrostratigraphic unit:

UA = Uppermost Aquifer

mg/L = milligrams per liter

ND = non-detect

pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around T-S line = Confidence band around Thiel-Sen line

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with the Statistical Analysis Plan using constituent concentrations observed at each monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits GWPS = Groundwater Protection Standard

GWPS Source:

Standard = standard specified in 35 I.A.C. § 845.600(a)(1)

Background = background concentration (see cover page for additional information)

FIGURES

FIGURE 1

2023 ANNUAL GROUNDWATER MONITORING AND **CORRECTIVE ACTION REPORT** WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

MONITORING WELL LOCATION MAP

400 200 0 __ Feet 1

- BACKGROUND WELL
 - REGULATED UNIT (SUBJECT UNIT)
 - LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

TOTAL ARSENIC EXCEEDANCE • \bigcirc TOTAL BORON EXCEEDANCE

- TOTAL CADMIUM EXCEEDANCE
- TOTAL LITHIUM EXCEEDANCE
- TOTAL SULFATE EXCEEDANCE
- TOTAL DISSOLVED SOLIDS EXCEEDANCE
- COMPLIANCE WELL WITHOUT EXCEEDANCE REGULATED UNIT (SUBJECT UNIT)
- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

GWPS EXCEEDANCE MAP UPPERMOST AQUIFER QUARTERS 2-3, 2023

2023 ANNUAL GROUNDWATER MONITORING AND **CORRECTIVE ACTION REPORT** WEST ASH POND SYSTEM

HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

MONITORING WELL

- -

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

- INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

REGULATED UNIT (SUBJECT UNIT)

LIMITS OF FINAL COVER

PROPERTY BOUNDARY

NOTES:

1. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

0 200 400

POTENTIOMETRIC SURFACE MAP APRIL 30, 2023

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WEST ASH POND SYSTEM

> HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 4

WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

2023 ANNUAL GROUNDWATER MONITORING AND **CORRECTIVE ACTION REPORT**

POTENTIOMETRIC SURFACE MAP MAY 30, 2023

200 400 0 ____ Feet 1

PLANT

1. ELEVATIONS IN PARENTHESES WERE NOT USED 2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)

*ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER

FOR CONTOURING.

NOTES:

MONITORING WELL

----->GROUNDWATER FLOW DIRECTION

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

- REGULATED UNIT (SUBJECT UNIT)
- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

-

+

FIGURE 5

MONITORING AND **CORRECTIVE ACTION REPORT** WEST ASH POND SYSTEM HENNEPIN POWER PLANT

HENNEPIN, ILLINOIS

2023 ANNUAL GROUNDWATER

JUNE 21, 2023

POTENTIOMETRIC SURFACE MAP

200 400 0 ____ Feet

NOTES:

COMPLIANCE MONITORING WELL

MONITORING WELL

CONTOUR

BACKGROUND MONITORING WELL

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION

GROUNDWATER FLOW DIRECTION

LIMITS OF FINAL COVER

PROPERTY BOUNDARY

REGULATED UNIT (SUBJECT UNIT)

+

- -

1. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER

PLANT

BACKGROUND MONITORING WELL

MONITORING WELL

- --

- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
 - REGULATED UNIT (SUBJECT UNIT)
 - LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

NOTES:

1. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

0	200	400

POTENTIOMETRIC SURFACE MAP JULY 21, 2023

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WEST ASH POND SYSTEM

> HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 6

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

- COMPLIANCE MONITORING WELL
- BACKGROUND MONITORING WELL
- MONITORING WELL
- GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)
- - INFERRED GROUNDWATER ELEVATION CONTOUR
- ----->GROUNDWATER FLOW DIRECTION
 - REGULATED UNIT (SUBJECT UNIT)
 - LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

NOTES:

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATIONS IN BRACKETS WERE OBTAINED OUTSIDE OF THE 24 HOUR PERIOD FROM INITIATION OF DEPTH TO GROUNDWATER MEASUREMENTS BUT WITHIN THE SAME SAMPLING EVENT.

3. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

0	200	400
		Feet

POTENTIOMETRIC SURFACE MAP AUGUST 21 AND 22, 2023

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WEST ASH POND SYSTEM

> HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

FIGURE 7

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 8

2023 ANNUAL GROUNDWATER MONITORING AND **CORRECTIVE ACTION REPORT** WEST ASH POND SYSTEM HENNEPIN POWER PLANT

HENNEPIN, ILLINOIS

SEPTEMBER 30, 2023

200 400 0 1 POTENTIOMETRIC SURFACE MAP

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF

GAGE SG02, LOCATED AT THE HENNEPIN POWER

FOR CONTOURING.

1. ELEVATIONS IN PARENTHESES WERE NOT USED

NOTES:

PLANT

+

> REGULATED UNIT (SUBJECT UNIT) LIMITS OF FINAL COVER

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION

PROPERTY BOUNDARY

MONITORING WELL

CONTOUR

FIGURE 9

WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

MONITORING AND

2023 ANNUAL GROUNDWATER CORRECTIVE ACTION REPORT

POTENTIOMETRIC SURFACE MAP **OCTOBER 31, 2023**

PLANT		
0	200	400
		- Feet

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF

GAGE SG02, LOCATED AT THE HENNEPIN POWER

FOR CONTOURING.

NOTES: 1.ELEVATIONS IN PARENTHESES WERE NOT USED

-

-

CONTOUR GROUNDWATER FLOW DIRECTION

REGULATED UNIT (SUBJECT UNIT)

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

FIGURE 10

HENNEPIN POWER PLANT

WEST ASH POND SYSTEM

HENNEPIN, ILLINOIS

2023 ANNUAL GROUNDWATER MONITORING AND **CORRECTIVE ACTION REPORT**

NOVEMBER 13, 2023

200 400 0 ____ Feet 1

1.ELEVATIONS IN PARENTHESES WERE NOT USED

POTENTIOMETRIC SURFACE MAP

*ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER

PLANT

FOR CONTOURING. 2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)

NOTES:

-

+

LIMITS OF FINAL COVER PROPERTY BOUNDARY

MONITORING WELL

INFERRED GROUNDWATER ELEVATION

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

FIGURE 11

WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

MONITORING AND **CORRECTIVE ACTION REPORT**

DECEMBER 21, 2023

2023 ANNUAL GROUNDWATER

POTENTIOMETRIC SURFACE MAP

200 400 0 ____ Feet 1

PLANT

GAGE SG02, LOCATED AT THE HENNEPIN POWER

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING. AMERICAN VERTICAL DATUM OF 1988 (NAVD88)

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF

NOTES:

LIMITS OF FINAL COVER PROPERTY BOUNDARY

-BACKGROUND MONITORING WELL

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

MONITORING WELL
ATTACHMENTS

ATTACHMENT A GROUNDWATER ELEVATION DATA

ATTACHMENT A

GROUNDWATER ELEVATION DATA 2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
21R	Compliance	UA	04/30/2023	5.16	446.88
21R	Compliance	UA	05/30/2023	5.92	446.13
21R	Compliance	UA	06/21/2023	6.36	445.68
21R	Compliance	UA	07/21/2023	6.11	445.93
21R	Compliance	UA	08/21/2023	6.36	445.68
21R	Compliance	UA	09/30/2023	6.52	445.53
21R	Compliance	UA	10/31/2023	5.67	446.38
21R	Compliance	UA	11/13/2023	5.77	446.28
21R	Compliance	UA	12/21/2023	6.18	445.87
22	Compliance	UA	04/30/2023	17.85	446.59
22	Compliance	UA	05/30/2023	18.45	446.00
22	Compliance	UA	06/21/2023	18.73	445.71
22	Compliance	UA	07/21/2023	18.52	445.92
22	Compliance	UA	08/21/2023	18.68	445.76
22	Compliance	UA	09/30/2023	19.54	444.91
22	Compliance	UA	10/31/2023	18.87	445.58
22	Compliance	UA	11/13/2023	18.43	446.02
22	Compliance	UA	12/21/2023	18.84	445.61
22D	Compliance	UA	04/30/2023	18.43	446.99
22D	Compliance	UA	05/30/2023	19.10	446.33
22D	Compliance	UA	06/21/2023	19.42	446.00
22D	Compliance	UA	07/21/2023	19.19	446.23
22D	Compliance	UA	08/21/2023	19.40	446.02
22D	Compliance	UA	10/31/2023	18.90	446.53
22D	Compliance	UA	11/13/2023	22.10	443.33
22D	Compliance	UA	12/21/2023	19.54	445.89
23	Compliance	UA	04/30/2023	15.90	447.48
23	Compliance	UA	05/30/2023	16.72	446.67
23	Compliance	UA	06/21/2023	17.08	446.30
23	Compliance	UA	07/21/2023	16.83	446.55
23	Compliance	UA	08/21/2023	17.08	446.30
23	Compliance	UA	09/30/2023	17.38	446.01
23	Compliance	UA	10/31/2023	16.45	446.94
23	Compliance	UA	11/13/2023	17.64	445.75
23	Compliance	UA	12/21/2023	17.18	446.21
27	Compliance	UA	04/30/2023	3.33	447.24
27	Compliance	UA	05/30/2023	4.14	446.44
27	Compliance	UA	06/21/2023	4.53	446.04
27	Compliance	UA	07/21/2023	4.31	446.27
27	Compliance	UA	08/21/2023	4.56	446.02
27	Compliance	UA	10/31/2023	3.72	446.86
27	Compliance	UA	11/13/2023	3.91	446.67
27	Compliance	UA	12/21/2023	4.38	446.20
32	Background	UA	04/30/2023	4.36	447.02
32	Background	UA	05/30/2023	5.22	446.16
32	Background	UA	06/21/2023	5.63	445.75

Dara"

RAMBOLL

ATTACHMENT A GROUNDWATER ELEVATION DATA

2023 35 I.A.C. § 845 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM

HENNEPIN, IL

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
32	Background	UA	07/21/2023	5.42	445.96
32	Background	UA	08/21/2023	5.60	445.78
32	Background	UA	09/30/2023	5.74	445.64
32	Background	UA	10/31/2023	4.62	446.76
32	Background	UA	11/13/2023	4.79	446.59
32	Background	UA	12/21/2023	5.20	446.18
34	Background	UA	04/30/2023	7.69	441.86
34	Background	UA	05/30/2023	8.66	440.90
34	Background	UA	06/21/2023	9.16	440.39
34	Background	UA	08/25/2023	NA	[440.58]
34	Background	UA	10/31/2023	7.74	441.82
34	Background	UA	11/13/2023	8.37	441.19
34	Background	UA	12/21/2023	7.76	441.80
35	Compliance	UA	04/30/2023	7.69	447.13
35	Compliance	UA	05/30/2023	8.30	446.53
35	Compliance	UA	06/21/2023	8.84	445.98
35	Compliance	UA	07/21/2023	8.58	446.24
35	Compliance	UA	08/21/2023	8.87	445.96
35	Compliance	UA	09/30/2023	9.05	445.78
35	Compliance	UA	10/31/2023	7.97	446.86
35	Compliance	UA	11/13/2023	8.15	446.68
35	Compliance	UA	12/21/2023	8.70	446.13
49	Compliance	UA	05/30/2023	21.54	446.63
49	Compliance	UA	08/25/2023	[19.65]	[448.52]
49	Compliance	UA	09/30/2023	22.16	446.01
49	Compliance	UA	10/31/2023	21.33	446.84
49	Compliance	UA	11/13/2023	21.49	446.68
49	Compliance	UA	12/21/2023	22.02	446.15
50	Compliance	UA	05/30/2023	18.25	445.69
50	Compliance	UA	10/31/2023	18.06	445.88
50	Compliance	UA	11/13/2023	18.24	445.70
50	Compliance	UA	12/21/2023	18.61	445.33
51	Compliance	UA	04/30/2023	17.74	447.05
51	Compliance	UA	05/30/2023	18.50	446.30
51	Compliance	UA	06/21/2023	18.94	445.85
51	Compliance	UA	07/21/2023	18.69	446.10
51	Compliance	UA	08/21/2023	18.92	445.87
51	Compliance	UA	09/30/2023	19.17	445.63
51	Compliance	UA	10/31/2023	18.22	446.58
51	Compliance	UA	11/13/2023	18.59	446.21
51	Compliance	UA	12/21/2023	18.84	445.96

Notes:

Due to malfunctioning pressure transducer, data gaps exist in monthly water level elevations prior to the fourth quarter. Monthly depth to water measurements were collected manually in the fourth quarter.

BMP = below measuring point

Bracketing [] indicates that the measurement was obtained outside of the episodic depth to groundwater measurements time frame.

NA = not available/not applicable

NAVD88 = North American Vertical Datum of 1988

Monitored Unit Abbreviations:

UA = uppermost aquifer

ATTACHMENT B ALTERNATIVE SOURCE DEMONSTRATION AND IEPA APPROVAL LETTER

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 · (217) 782-3397 JB PRITZKER, GOVERNOR JOHN J. KIM, DIRECTOR

217-782-1020

December 11, 2023

Phil Morris Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Re: Hennepin Power Plant West Ash Pond System; W1550100002-01 & 03 Alternative Source Demonstration (ASD) Submittal

Dear Mr. Morris:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) does concur with the Hennepin West Ash Pond System Alternative Source Demonstration (ASD) dated November 10, 2023.

Based on the evidence, the Illinois EPA concurs that the cadmium exceedances, found in well 22, do not come from the Hennepin West Ash Pond System. The Illinois EPA also concurs that the likely source of the exceedance is the mobilization of naturally occurring cadmium in aquifer solids during favorable conditions. Therefore, the groundwater monitoring may continue in accordance with Section 845.650(e)(5). The ASD provided must be included in the annual groundwater monitoring report and the corrective action report as required by Section 845.610(e).

If you have any questions, please contact: **Justin Bierwagen** Illinois EPA, Bureau of Water, Groundwater Section DPWS #13, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the investigation described above, please call 217-782-1020.

Sincerely,

mit

Michael Summers, P.G. Manager, Groundwater Section Division of Public Water Supplies Bureau of Water

cc: Justin Bierwagen ✓Heather Mullenax Keegan MacDonna Records 06M

2125 S. First Street, Champaign, IL 61820 (217) 278-5800 1101 Eastport Plaza Dr., Suite 100, Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 595 S. State Street, Elgin, IL 60123 (847) 608-3131

2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 4302 N. Main Street, Rockford, IL 61103 (815) 987-7760 Prepared for Dynegy Midwest Generation, LLC

Date November 10, 2023

Project No. 1940103649-010

35 I.A.C. § 845.650(E): ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS IEPA ID: W1550100002-01 AND W1550100002-03

CERTIFICATIONS

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

a.

Eric J. Tla¢håc Qualified Professional Engineer 062-063091 Illinois Ramboll Americas Engineering Solutions, Inc. Date: November 10, 2023

I, Brian G. Hennings, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Brian G. Hennings Professional Geologist 196-001482 Illinois Ramboll Americas Engineering Solutions, Inc. Date: November 10, 2023

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

CONTENTS

1.	Introduction	3
2.	Background	4
2.1	Site Location and Description	4
2.2	Groundwater Monitoring	4
2.3	Site History	4
2.4	Site Hydrogeology and Stratigraphy	5
3.	Alternative Source Demonstration: Lines of Evidence	7
3.1	LOE #1: Concentrations of Cadmium in WAPS Porewater Samples	
	are Lower Than Those Observed in Well 22	7
3.2	LOE #2: Cadmium Concentrations in Groundwater are Inversely	
	Correlated with Concentrations of CCR Indicator Parameters	8
3.3	LOE #3: An Aquifer Solids and Geochemical Evaluation Identified	
	Naturally Occurring Cadmium Associated with the Subsurface	
	Alluvium as a Source of Cadmium in the Uppermost Aquifer that	
	can be Mobilized Under Declining pH Conditions Observed at the	
	WAPS	9
4.	Conclusions	10
5.	References	11

TABLES (IN TEXT)

Table A Operational History of the West Ash Pond System

FIGURES (IN TEXT)

Figure A Scatter Plot of Cadmium Versus Boron and Sulfate Concentrations at Monitoring Well 22

FIGURES (ATTACHED)

- Figure 1 Monitoring Well Location Map
- Figure 2 Potentiometric Surface Map May 30, 2023
- Figure 3 Porewater Sample Location Map

APPENDICES

- Appendix A Groundwater Elevation Contour Maps
- Appendix B Porewater Analytical Data, Boring Logs, and Well Construction Information
- Appendix C Supporting Groundwater Analytical Data
- Appendix D Technical Memorandum Evaluation of Cadmium Sources within Aquifer Solids, Hennepin Power Plant – West Ash Pond System (Geosyntec Consultants, Inc., 2023)

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
AP2/AP4	Ash Pond No. 2/ Ash Pond No. 4
ASD	Alternative Source Demonstration
CCR	coal combustion residuals
Closure Plan	Closure and Post-Closure Care Plan
СМА	Corrective Measures Assessment
DMG	Dynegy Midwest Generation, LLC
E001	Event 1
EPRI	Electric Power Research Institute
Geosyntec	Geosyntec Consultants, Inc.
GWPS	Groundwater Protection Standard
Hennepin East	includes Landfill, AP2, AP4, and East Ash Pond
HPP	Hennepin Power Plant
IEPA	Illinois Environmental Protection Agency
LOE(s)	line(s) of evidence
mg/L	milligrams per liter
NAVD88	North American Vertical Datum of 1988
No.	Number
NRT/OBG	Natural Resource Technology, an OBG Company
OWAP	Old West Ash Pond (Pond Number No. 1 and Pond No. 3)
OWPP	Old West Polishing Pond
Ramboll	Ramboll Americas Engineering Solutions, Inc.
RL	reporting limit
UA	Uppermost Aquifer
USEPA	United States Environmental Protection Agency
WAPS	West Ash Pond System CCR multi-unit, includes OWAP and OWPP

1. INTRODUCTION

Under Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.650(e), within 60 days from the date of determination of an exceedance of a groundwater protection standard (GWPS) for constituents listed in 35 I.A.C. § 845.600, an owner or operator of a coal combustion residuals (CCR) surface impoundment may complete a written demonstration that a source other than the CCR surface impoundment caused the contamination and the CCR surface impoundment did not contribute to the contamination, or that the exceedance of the GWPS resulted from error in sampling, analysis, statistical evaluation, natural variation in groundwater quality, or a change in the potentiometric surface and groundwater flow direction (Alternative Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG), by Ramboll Americas Engineering Solutions, Inc. (Ramboll) to provide pertinent information pursuant to 35 I.A.C. § 845.650(e) for the West Ash Pond System (WAPS), located at Hennepin Power Plant (HPP) near Hennepin, Illinois. The WAPS is comprised of two units: the Old West Ash Pond (Pond Number [No.] 1 and Pond No. 3) (OWAP) and Old West Polishing Pond (OWPP).

The most recent quarterly sampling event (Event 1 [E001]) was completed on June 1, 2023, and analytical data were received on July 13, 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(C), comparison of statistically derived values with the GWPSs described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS was completed by September 11, 2023, within 60 days of receipt of the analytical data (Ramboll, 2023a). The statistical determination identified the following GWPS exceedances at compliance groundwater monitoring wells:

- Arsenic at wells 21R and 51
- Boron at wells 21R, 22, 23, and 35
- Cadmium at well 22
- Sulfate at wells 23 and 35

Pursuant to 35 I.A.C. § 845.650(e), the lines of evidence (LOEs) presented in **Section 3** demonstrate that sources other than the WAPS were the cause of the cadmium GWPS exceedance listed above and the WAPS has not contributed to the exceedances. Cadmium is demonstrated to be naturally occurring in aquifer solids and mobilized to groundwater by declining pH conditions. This ASD was completed by November 10, 2023, within 60 days of determination of the exceedances (September 11, 2023), as required by 35 I.A.C. § 845.650(e). This ASD has been completed in conformance with guidance provided in the Electric Power Research Institute (EPRI) guidance for development of ASDs at CCR sites (EPRI, 2017), and the United States Environmental Protection Agency (USEPA)'s Solid Waste Disposal Facility Criteria: Technical Manual (USEPA, 1993).

Arsenic, boron, and sulfate GWPS exceedances at the WAPS will be addressed in accordance with 35 I.A.C. § 845.660.

2. BACKGROUND

2.1 Site Location and Description

The HPP is located in the northwest quarter of Section 26, Township 33 North, Range 2 West, Putnam County, Illinois and approximately 3 miles north-northeast of the Village of Hennepin.

The WAPS is one of three CCR units at the HPP regulated under 35 I.A.C. § 845. The other two CCR units regulated under 35 I.A.C. § 845 (Ash Pond No. 2 and No. 4 multi-unit [AP2/AP4] and the East Ash Pond) are located adjacent to each other and the Landfill, east of the HPP, and are collectively known as Hennepin East. The WAPS is located west of the HPP. Areas surrounding the WAPS include agricultural land with scattered groupings or rows of trees to the southeast and low-lying floodplains of the Donnelley Wildlife Management Area to the southwest and west. The WAPS and surrounding properties are shown on **Figure 1**.

2.2 Groundwater Monitoring

The WAPS groundwater monitoring system consists of two background monitoring wells (32 and 34) and nine compliance monitoring wells (21R, 22, 22D, 23, 27, 35, 49, 50, and 51) (Ramboll, 2021). A map showing the groundwater monitoring system, including the CCR unit and monitoring wells, is presented in **Figure 1**.

Groundwater samples are collected and analyzed in accordance with the Multi-Site Sampling and Analysis Plan (Ramboll, 2023b). Statistical evaluation of analytical data is performed in accordance with Multi-Site Statistical Analysis Plan (Ramboll, 2022).

2.3 Site History

The HPP has two coal-fired generating units constructed in 1953 and 1959 with a total capacity of 210 Megawatts. Operations ceased in November 2019.

DMG operated the WAPS from 1952 through 1996. It consists of two closed units, the OWAP and the OWPP (**Figure 1**). The OWAP consists of the 9.3-acre Pond No. 1 at the eastern end of the impoundment and the 16.4-acre Pond No. 3 within the central portion of the impoundment. The 4.7-acre OWPP is situated at the western end of the impoundment. All ponds were previously bermed to approximately 15 feet above grade using locally occurring sandy soils. A portion of the OWPP berm was removed after CCR material was removed during closure of this unit in 2020.

During operation, service water was used to sluice fly ash, bottom ash, and low-volume wastes to the WAPS. At the time it was removed from service in late 1996, there was no surface water discharge. Coal ash sluiced to the WAPS was a by-product of the combustion of high-sulfur Illinois coal. The operational history of the WAPS is summarized in **Table A** on the following page.¹

¹ A more detailed description of the operational history can be found in the Hydrogeologic Site Characterization Report, submitted as part of the Closure Plan (NRT/OBG, 2017).

Date	Event
1952-1955	Construction of OWAP, Pond No. 1. Berms were constructed from locally sandy materials to an original elevation (since modified) of 457 feet NAVD88.
1968	Construction of OWAP, Pond No. 3. Berms were constructed to an original elevation (since modified) of 457 feet NAVD88.
1979	Berms surrounding the OWAP Ponds No. 1 and No. 3 were raised by three feet to an elevation of 460 feet NAVD88.
1988-1989	Ponds No. 1 and No. 3 within the OWAP were consolidated and divided into primary and secondary cells, and the berm around the primary portion was raised five feet to an elevation of 465 feet NAVD88. It was after this consolidation that surface water discharge from the impoundment ceased.
1996	OWAP Ponds No. 1 and No. 3 were removed from service.
2020	OWAP Ponds No. 1 and No. 3 were closed in place and OWPP was closed by removal (CCR consolidated into Ponds No. 1 and No. 3) in accordance with the IEPA-approved closure plan.

Table A. Operational History of the West Ash Pond System

IEPA = Illinois Environmental Protection Agency NAVD88 = North American Vertical Datum of 1988

The *Closure and Post-Closure Care Plan, Old West Ash Pond, Old West Polishing Pond at DMG, Hennepin Power Station* (Closure Plan) was submitted to IEPA in 2017 (Geosyntec Consultants, Inc. [Geosyntec], 2017). The Closure Plan was approved by IEPA in a letter dated June 19, 2018. The approved Closure Plan summarized the planned closure of the WAPS, which included dewatering the CCR, if needed, mechanical excavation of material from the OWPP for use as structural fill in the WAPS, grading within the WAPS, constructing an alternative cover system consisting of geomembrane and vegetated cover soils in direct contract with the graded CCR, and establishment of a vegetative cover. Closure construction was completed on November 17, 2020.

2.4 Site Hydrogeology and Stratigraphy

While information pertinent to this ASD is included in this report, a detailed hydrogeological assessment of the site hydrogeology and stratigraphy was completed and included in the October 25, 2021 operating permit application (Burns & McDonnell, 2021) and the Hydrogeologic Site Characterization Report, submitted as part of the Closure Plan (NRT/OBG, 2017). Those materials are incorporated herein.

There are three dominant geomorphic features in the immediate vicinity of the HPP: an upper river terrace at an elevation of about 500 to 550 feet NAVD88, a lower river terrace at an elevation of about 450 to 460 feet NAVD88, and the current river valley filled with alluvium to an elevation of about 445 feet NAVD88. The HPP and the eastern portion of the WAPS (OWAP Pond No. 1) are on the lower terrace. The western portion of the WAPS (OWAP Pond No. 3 and OWPP) overlies alluvium.

The hydrogeological assessment identified that the stratigraphy within and immediately surrounding the WAPS consists of fill, unlithified river alluvium, and Pleistocene-age glacial outwash deposits overlying Pennsylvanian-age shale bedrock. The perimeter berms of the WAPS contain variable amounts of CCR and re-worked native silt, clay, and sand. Where undisturbed or

partially excavated, the native surficial soil at the site is poorly drained, moderately permeable silty clay loam formed as alluvium in floodplains.

There are two hydrogeologic units present at the HPP: alluvium and Henry Formation sands and gravels. The river laid deposits are identified as Cahokia Alluvium. The Henry Formation sands and gravels make up the upper and lower terraces and fill the valley beneath the alluvium. The Henry Formation and alluvium together comprise the Uppermost Aquifer (UA) at the WAPS and extend from the water table to the bedrock.

The WAPS overlies both glacial deposits (Henry Formation) and alluvium (Cahokia Alluvium). The WAPS, specifically OWAP Pond No. 1, rests on top of lower terrace glacial deposits, and the eastern portion of Pond No. 3 overlies alluvial sand. The western portion of Pond No. 3 and the OWPP overlie silty clay alluvial channel fill deposits.

The Pennsylvanian-age bedrock consists of interbedded layers of shale with thin limestone, sandstone, and coal beds. The shale bedrock unit has low hydraulic conductivity and defines the lower boundary of the UA.

The direction of groundwater flow and hydraulic gradient within the UA varies with the elevation of the Illinois River (select groundwater elevation contour maps are provided in **Appendix A**). During normal river stage the direction of groundwater flow is most often toward the river, but comparison of groundwater and river elevation data indicate reversals in this flow direction during times of high river elevations. The relative duration of these events is short, which leads to the determination of a predominant groundwater flow direction toward the river.

Groundwater elevations for the WAPS during the E001 sampling event on May 30, 2023 are shown in **Figure 2** and ranged from 440.90 feet NAVD88 (in well 34) to 446.70 feet NAVD88 (in wells 26 and 36). The groundwater flow direction was northwest toward the river at this time.

3. ALTERNATIVE SOURCE DEMONSTRATION: LINES OF EVIDENCE

As allowed by 35 I.A.C. § 845.650(e), this ASD demonstrates that sources other than the WAPS (the CCR unit) caused the cadmium exceedance at well 22 and did not contribute to the contamination. LOEs supporting this ASD include the following:

- 1. Concentrations of cadmium in WAPS porewater samples are lower than those observed in well 22.
- 2. Cadmium concentrations in groundwater are inversely correlated with concentrations of CCR indicator parameters.
- 3. An aquifer solids and geochemical evaluation identified naturally occurring cadmium associated with the subsurface alluvium as a source of cadmium in the Uppermost Aquifer that can be mobilized under declining pH conditions observed at the WAPS.

Data and information supporting these LOEs are discussed in more detail below.

3.1 LOE #1: Concentrations of Cadmium in WAPS Porewater Samples are Lower Than Those Observed in Well 22

Porewater samples were collected from multiple locations shown on **Figure 3** within the WAPS in April and September of 2017 (**Appendix B**). As presented above, closure construction of the WAPS was completed on November 17, 2020 and hydrogeologic characterization of the WAPS was completed prior to closure as documented in the operating permit application and the Hydrogeologic Site Characterization Report, submitted as part of the Closure Plan (NRT/OBG, 2017). Porewater wells L4, LPZ1, LPZ3, and LPZ17 are distributed across the WAPS from east to west (**Figure 3**) and each of the wells were screened at the base of CCR material (see boring logs and well construction information provided in **Appendix B**). More recent data from these wells is not available². CCR porewater most accurately represents the mobile constituents associated with the waste management activity within the CCR SI (EPRI, 2017). The spatial distribution of the wells and screen intervals at the base of the observed CCR material in 2017 provide sample results that are representative of porewater at the WAPS.

Analytical results from locations L4, LPZ1, LPZ3, and LPZ17, sampled on April 25, 2017, indicate that total cadmium concentrations in porewater within the WAPS were less than laboratory reporting limits (RL) (less than 0.001 milligrams per liter [mg/L]). Analytical results of porewater within the WAPS locations L4 and LPZ17, sampled on September 6, 2017, indicate that the total cadmium concentration in the sample from L4 was below the RL (less than 0.001 mg/L) and the total cadmium concentration in the sample from LPZ17 was 0.0013 mg/L. Samples were not collected from LPZ1 and LPZ3 on September 6, 2017 due to these porewater wells being dry.

The cadmium concentrations detected in the porewater samples collected within the WAPS are less than the lower confidence limit of cadmium concentrations observed in well 22 (0.00614 mg/L) therefore the WAPS cannot be the source of the concentrations observed in well 22.

² During closure construction three porewater locations were modified to extend up through the final cover system (LPZ1, LPZ3, and LPZ5). Water level measurements collected from these three wells are similar to the total depths of the wells with little variation, indicating the wells are dry and water levels within the WAPS are below the well screens of these porewater wells.

Analytical data used to support the calculation of lower confidence limits are included in **Appendix C**.

3.2 LOE #2: Cadmium Concentrations in Groundwater are Inversely Correlated with Concentrations of CCR Indicator Parameters

Boron and sulfate are common indicators of CCR impacts to groundwater due to their leachability from CCR and mobility in groundwater (Electric Power Research Institute [EPRI], 2012). Porewater from the WAPS is elevated in both boron and sulfate (**Appendix B**), indicating that these parameters are site-specific key indicators for CCR. If an exceedance is identified for a monitored parameter, but concentrations of boron and sulfate are not directly correlated with that parameter, it is unlikely that the CCR unit is the source of the exceedance.

Figure A on the following page provides a scatter plot of cadmium versus boron and sulfate concentrations (collected from 2015 through the E001 sampling event) in monitoring well 22 (the location of the cadmium exceedance), along with the results of a Kendall correlation test for non-parametric data (these data were determined to be not normally distributed). The results of the test at each well are described by the p-value and tau (Kendall correlation coefficient) included in each plot. Typically, a p-value greater than 0.05 is considered to be a statistically insignificant relationship. The range of tau falls between -1 and 1, with a perfect correlation equal to -1 or 1. The closer tau is to 0, the less of a correlation exists in the data.

The results of the correlation analyses indicate that concentrations of cadmium observed at monitoring well 22 are inversely correlated with concentrations of boron and sulfate, common indicators of CCR impacts to groundwater. **Figure A** illustrates the inverse relationship between cadmium concentrations and boron or sulfate concentrations in groundwater at monitoring well 22, where the p-values are less than 0.001 and tau values are negative.

Figure A. Scatter Plot of Cadmium Versus Boron and Sulfate Concentrations at Monitoring Well 22

Cadmium concentrations are inversely correlated with boron and sulfate concentrations in compliance monitoring well 22, indicating the WAPS is not the source of the cadmium exceedance. Analytical data used to support this correlation analysis is included in **Appendix C**.

3.3 LOE #3: An Aquifer Solids and Geochemical Evaluation Identified Naturally Occurring Cadmium Associated with the Subsurface Alluvium as a Source of Cadmium in the Uppermost Aquifer that can be Mobilized Under Declining pH Conditions Observed at the WAPS

Solid phase analyses were completed on samples of UA materials collected from the Site to support the conclusion that cadmium concentrations in groundwater observed in well 22 are associated with naturally occurring cadmium in the UA materials. A review of the geochemical and site conditions to evaluate the influence of the UA solid-phase mineralogy and geochemistry on groundwater composition was completed by Geosyntec and is included as **Appendix D**. The following conclusions were made based on the results of the aquifer solids evaluation and geochemical modeling:

- Solid-phase samples collected from soil borings completed adjacent to background well 34 and compliance well 22 contained cadmium, with the highest total cadmium concentrations observed in samples collected from the screened interval of well 22.
- The majority of cadmium in the solid phase is associated with the weak acid extractable fraction (which includes carbonates) and the reducing agent extractable fraction (which includes iron/manganese oxides). Carbonate minerals make up approximately 18-25% of the solid phase materials and magnetite (an iron oxide mineral) was present in all solid phase samples.
- Literature supports two potential mechanisms of cadmium mobilization under declining pH conditions observed at the WAPS: the dissolution of calcite containing coprecipitated cadmium, and the desorption of cadmium from iron oxide mineral surfaces.
- There has been a downward shift in pH in groundwater at well 22 since approximately 2013 with a corresponding increase in cadmium concentrations.
- Thermodynamic reaction pathway modeling supports the conclusion that both mechanisms of cadmium mobilization (dissolution of cadmium-substituted carbonate minerals and desorption from iron oxides) should occur within the range of the observed groundwater pH decrease at well 22.

Evaluation of the solid phase material and geochemical modeling results using site-specific solid-phase data suggest that naturally occurring cadmium associated with the subsurface alluvium comprising the UA at the Site is the alternative source of the cadmium concentrations at well 22 under changing geochemical conditions.

4. CONCLUSIONS

Based on these three LOEs, it has been demonstrated that the WAPS is not the source of and has not contributed to the cadmium exceedance identified in well 22.

- 1. Concentrations of cadmium in WAPS porewater samples are lower than those observed in well 22.
- 2. Cadmium concentrations in groundwater are inversely correlated with concentrations of CCR indicator parameters.
- 3. An aquifer solids and geochemical evaluation identified naturally occurring cadmium associated with the subsurface alluvium as a source of cadmium in the Uppermost Aquifer that can be mobilized under declining pH conditions observed at the WAPS.

Based on the LOEs presented, the following alternative sources are the cause of the exceedance observed in the WAPS compliance well 22:

• Cadmium: exceedance for cadmium is caused by mobilization of naturally occurring cadmium out of aquifer solids due to favorable geochemical conditions.

This information serves as the written ASD report prepared in accordance with 35 I.A.C. § 845.650(e), that the cadmium exceedance observed during the E001 monitoring event was not caused by the WAPS but was from other sources.

5. REFERENCES

Burns & McDonnell, 2021. Initial Operating Permit, Hennepin West Ash Pond System, October 25, 2021.

Electric Power Research Institute (EPRI), 2012. Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate. EPRI, Palo Alto, CA. 1017923.

Electric Power Research Institute (EPRI), 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. EPRI, Palo Alto, CA. 3002010920.

Geosyntec Consultants, Inc. (Geosyntec), 2017. Closure and Post Closure Care Plan, Old West Ash Pond, Old West Polishing Pond at Dynegy Midwest Generation, LLC, Hennepin Power Station.

Geosyntec Consultants, Inc., 2023. Technical Memorandum – Evaluation of Cadmium Sources within Aquifer Solids, Hennepin Power Plant – West Ash Pond System, October 26, 2023.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017. Hydrogeologic Site Characterization Report, West Ash Pond System, Hennepin Power Station, Hennepin, Illinois. December 20, 2017.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021. Groundwater Monitoring Plan Addendum for the West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2022. Multi-Site Statistical Analysis Plan. December 28, 2022.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023a. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 2, West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois. September 11, 2023.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023b. Multi-Site Sampling and Analysis Plan, Revision 1. October 10, 2023.

United States Environmental Protection Agency (USEPA), 1993. Solid Waste Disposal Facility Criteria: Technical Manual EPA530-R-93-017. Solid Waste and Emergency Response (5305). November 1993.

FIGURES

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 1

ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

MONITORING WELL LOCATION MAP

S

35 I.A.C. § 845 REGULATED UNIT (SUBJECT UNIT)

LIMITS OF FINAL COVER

PROPERTY BOUNDARY

COMPLIANCE MONITORING WELL

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 2

ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

POTENTIOMETRIC SURFACE MAP MAY 30, 2023

PLANT		
0	200	400
	<u> </u>	Feet

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER

1. ELEVATIONS IN PARENTHESES WERE NOT USED

NOTES:

FOR CONTOURING.

LIMITS OF FINAL COVER

-

PROPERTY BOUNDARY

MONITORING WELL

CONTOUR

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION

REGULATED UNIT (SUBJECT UNIT)

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 3

ALTERNATIVE SOURCE DEMONSTRATION WEST ASH POND SYSTEM HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

POREWATER SAMPLE LOCATION MAP

400 200 0 - Feet

LIMITS OF FINAL COVER PROPERTY BOUNDARY

♦ LEACHATE WELL REGULATED UNIT (SUBJECT UNIT)

APPENDICES

APPENDIX A GROUNDWATER ELEVATION CONTOUR MAPS

HENNEPIN OLD WEST ASH POND (POND NO.1 AND POND NO. 3) AND HENNEPIN OLD WEST POLISHING POND (UNIT ID: 804) GROUNDWATER ELEVATION CONTOUR MAP JUNE 18, 2019

CCR RULE GROUNDWATER MONITORING HENNEPIN POWER STATION HENNEPIN, ILLINOIS

0 125 250 500 Feet

HENNEPIN OLD WEST ASH POND (POND NO.1 AND POND NO. 3) AND HENNEPIN OLD WEST POLISHING POND (UNIT ID: 804) GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 17, 2019

CCR RULE GROUNDWATER MONITORING HENNEPIN POWER STATION HENNEPIN, ILLINOIS

0 125 250 500 Feet

O'BRIEN & GERE ENGINEERS, INC.

⊕

250

.

500

L Feet

RAMBOLL US CORPORATION A RAMBOLL COMPANY

HENNEPIN, ILLINOIS

BACKGROUND WELL

COMPLIANCE WELL

MONITORING WELL

- GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)
- - INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
- PART 257 REGULATED UNIT (SUBJECT UNIT)
- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

NOTES:

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

0 200 400

GROUNDWATER CONTOUR ELEVATION MAP MARCH 17, 2021

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT OLD WEST ASH POND HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

> RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

BACKGROUND WELL

COMPLIANCE WELL

MONITORING WELL

- GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)
- - INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW ARROW
 - PART 257 REGULATED UNIT (SUBJECT UNIT)
 - LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

NOTES:

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2.ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) 3.NM - NOT MEASURED

0 200 400

GROUNDWATER CONTOUR ELEVATION MAP SEPTEMBER 8, 2021

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT OLD WEST ASH POND HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

> RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL

FIGURE 2

HENNEPIN, ILLINOIS

OLD WEST ASH POND

HENNEPIN POWER PLANT

ALTERNATE SOURCE DEMONSTRATION

ELEVATION MAP MARCH 21, 2022

GROUNDWATER CONTOUR

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER

FOR CONTOURING.

NOTES: 1. ELEVATIONS IN PARENTHESES WERE NOT USED

PLANT

0

200 400

1

____ Feet

PART 257 REGULATED UNIT (SUBJECT UNIT) LIMITS OF FINAL COVER

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION

PROPERTY BOUNDARY

+ COMPLIANCE WELL

MONITORING WELL

CONTOUR

- -

COMPLIANCE MONITORING WELL

BACKGROUND MONITORING WELL

MONITORING WELL

GROUNDWATER ELEVATION CONTOUR (1 FT CONTOUR INTERVAL, NAVD88)

- - INFERRED GROUNDWATER ELEVATION CONTOUR
- PART 257 REGULATED UNIT (SUBJECT UNIT)
- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

NOTES:

1.ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) *ILLINOIS RIVER ELEVATION OBTAINED FROM STAFF GAGE SG02, LOCATED AT THE HENNEPIN POWER PLANT

0 200 400

GROUNDWATER CONTOUR ELEVATION MAP SEPTEMBER 13 AND 14, 2022

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT OLD WEST ASH POND HENNEPIN POWER PLANT HENNEPIN, ILLINOIS

> RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

APPENDIX B POREWATER ANALYTICAL DATA, BORING LOGS, AND WELL CONSTRUCTION INFORMATION **POREWATER ANALYTICAL DATA**

May 08, 2017

Steve Wiskes Natural Resource Technology, Inc. 2422 East Washington Street Suite 104 Bloomington, IL 61704 TEL: (414) 837-3614 FAX: (414) 837-3608

RE: Hennepin Pond 1 & 2 Additional Testing

WorkOrder: 17040224

Dear Steve Wiskes:

TEKLAB, INC received 9 samples on 4/27/2017 4:40:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager (618)344-1004 ex 16 MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing

 Work Order:
 17040224

 Report Date:
 08-May-17

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	18
Dates Report	19
Quality Control Results	23
Receiving Check List	34
Chain of Custody	Appended

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

Report Date: 08-May-17

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing

Cooler Receipt Temp: 4.62 °C

An employee of Teklab, Inc. collected the sample(s).

LPZ-5 will not be reported; the well was dry. TM/EAH 4/27/17

LPZ-17 to be used as alternate sampling point for LPZ-5. MLA 5/1/17

		L	ocations and	d Accred	litations			
	Collinsville	Springfield		Kansas	City	•	Collinsville Air	
Address	5445 Horseshoe Lake Road	3920 Pintail Dr		8421 Niei	nan Road	4	5445 Horseshoe Lake Road	
	Collinsville, IL 62234-7425	Springfield, IL 627	Springfield, IL 62711-9415 L		S 66214	(Collinsville, IL 62234-7425	
Phone	(618) 344-1004	(217) 698-1004		(913) 541	-1998	((618) 344-1004	
Fax	(618) 344-1005	(217) 698-1005	(217) 698-1005		-1998	((618) 344-1005	
Email	jhriley@teklabinc.com	KKlostermann@te	ann@teklabinc.com		teklabinc.co	m l	EHurley@teklabinc.com	
	State	Dept	Cert #	ŧ	NELAP	Exp Date	e Lab	
	Illinois	IEPA	100226		NELAP	1/31/2018	Collinsville	
	Kansas	KDHE	E-10374	ļ	NELAP	4/30/2018	Collinsville	
	Louisiana	LDEQ	166493		NELAP	6/30/2017	Collinsville	
	Louisiana	LDEQ	EQ 166578		NELAP	6/30/2017	Collinsville	
	Texas	TCEQ	T104704515-	-12-1	NELAP	7/31/2017	Collinsville	
	Arkansas	ADEQ	88-0966	5		3/14/2018	Collinsville	
	Illinois	IDPH	17584			5/31/2017	Collinsville	
	Indiana	ISDH	C-IL-06	j		1/31/2018	Collinsville	
	Kentucky	KDEP	98006			12/31/2017	Collinsville	
	Kentucky	UST	0073			1/31/2018	Collinsville	
	Missouri	MDNR	00930			5/31/2017	Collinsville	
	Missouri	MDNR	930			1/31/2018	Collinsville	
	Oklahoma	ODEQ	9978			8/31/2017	Collinsville	

Laboratory Results

http://www.teklabinc.com/

Work Order: 17040224

Client Project: Hennepin Po	nd 1 & 2 Additional	Testing		Report Date: 08-May-17				
Lab ID: 17040224-00	1		(Client Samp	ole ID: L4			
Matrix: LEACHATE				Collection	Date: 04/2	25/2017	17:22	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to leachate from measurir point	ng	0		11.10	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	H B FIELD							
рН		1.00		7.60		1	04/25/2017 17:22	R232332
STANDARD METHODS 2130) B FIELD							D
lurbidity		1.0		< 1.0	NIU	1	04/25/2017 17:22	R232332
STANDARD METHODS 18TH	ED. 2580 B FIELD				.,			D
Oxidation-Reduction Potential		-300		-149	mV	1	04/25/2017 17:22	R232332
STANDARD METHODS 2510	B FIELD				<i></i>			D
Conductivity		1		940	µS/cm	1	04/25/2017 17:22	R232332
STANDARD METHODS 2550	B FIELD	-						D
Temperature		0		19.54	°C	1	04/25/2017 17:22	R232332
STANDARD METHODS 4500	-O G FIELD							
Oxygen, Dissolved	-	1.00		< 1.00	mg/L	1	04/25/2017 17:22	R232332
STANDARD METHODS 2320	В							
Alkalinity, Carbonate (as CaCO3	3) NELAP	0		0	mg/L	1	05/02/2017 16:21	R232320
STANDARD METHODS 2320	B (TOTAL)							
Alkalinity, Bicarbonate (as CaCC	D3) NELAP	0		316	mg/L	1	05/02/2017 16:21	R232319
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		900	mg/L	1	04/28/2017 14:54	R232219
SW-846 9036 (TOTAL)		(00						50000/0
Sulfate	NELAP	100		370	mg/L	10	05/02/2017 1:02	R232246
SW-846 9214 (TOTAL)		0.40						5000/50
Fluoride	NELAP	0.10		0.28	mg/L	1	04/28/2017 16:21	R232156
SW-846 9251 (TOTAL)		_					05/00/00/7 0.54	Desease
Chloride	NELAP	5		10	mg/L	1	05/02/2017 0:54	R232262
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							10000
	NELAP	0.050		190	mg/L	1	04/28/2017 18:45	129686
Magnesium	NELAP	0.050		26.9	mg/L	1	04/28/2017 18:45	129686
Polassium		0.500		9.33	mg/L	5 1	03/01/2017 10.30	129000
		0.030		J0.4	mg/L	1	04/20/2017 10:45	129000
SW-846 3005A, 6020A, META		1 0		2.0	ug/l	5	05/02/2017 12:07	120687
Arsenic		1.0		3.0 25.1	µg/L	5	05/02/2017 12:07	129087
Barium	NELAP	1.0		50.6	μg/L μg/l	5	05/02/2017 12:07	129687
Bervllium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	129687
Boron	NELAP	25.0		21200	µg/L	5	05/04/2017 10:28	129687
Cadmium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:07	129687
Chromium	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	129687
Cobalt	NELAP	1.0		< 1.0	μg/L	5	05/02/2017 12:07	129687
Lead	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:07	129687
Lithium		1.0		45.5	µg/L	5	05/02/2017 12:07	129687
Molybdenum	NELAP	1.0		77.9	µg/L	5	05/02/2017 12:07	129687
Selenium	NELAP	1.0		1.4	µg/L	5	05/02/2017 12:07	129687
Thallium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:07	129687

Client: Natural Reso	Client: Natural Resource Technology, Inc.				Work Order: 17040224				
Client Project: Hennepin Por	nd 1 & 2 Additional Te	esting				Rep	oort Date: 08-May-17		
Lab ID: 17040224-00	1			Client Samp	ole ID: L4				
Matrix: LEACHATE			Collection Date: 04/25/2017 17:22				17:22		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch		
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20		< 0.20	µg/L	1	05/01/2017 12:14 129695		

http://www.teklabinc.com/

Work Order: 17040224

Client Project: Hennepin Po	nd 1 & 2 Additional	Testing		Report Date: 08-May-17				
Lab ID: 17040224-00	2			Client Sam	ple ID: LPZ	'-1		
Matrix: LEACHATE				Collection	Date: 04/	25/2017	17:34	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	EMENTS							
Depth to leachate from measurin	ng	0		3.94	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	H B FIELD							
рН		1.00		9.10		1	04/25/2017 17:34	R232332
STANDARD METHODS 2130) B FIELD							
Turbidity		1.0		5.6	NTU	1	04/25/2017 17:34	R232332
STANDARD METHODS 18TH	ED. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-177	mV	1	04/25/2017 17:34	R232332
STANDARD METHODS 2510	B FIELD							
Conductivity		1		1550	µS/cm	1	04/25/2017 17:34	R232332
STANDARD METHODS 2550	B FIELD							
Temperature		0		18.67	°C	1	04/25/2017 17:34	R232332
STANDARD METHODS 4500	-O G FIELD							
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	04/25/2017 17:34	R232332
STANDARD METHODS 2320	В							
Alkalinity, Carbonate (as CaCO3	3) NELAP	0		84	mg/L	1	05/02/2017 16:29	R232320
STANDARD METHODS 2320	B (TOTAL)							
Alkalinity, Bicarbonate (as CaCC	D3) NELAP	0		0	mg/L	1	05/02/2017 16:29	R232319
STANDARD METHODS 2540	C (TOTAL)							
Total Dissolved Solids	NELAP	20		1600	mg/L	1	04/28/2017 14:55	R232219
SW-846 9036 (TOTAL)								
Sulfate	NELAP	200		926	mg/L	20	05/03/2017 15:57	R232369
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		< 0.10	mg/L	1	04/28/2017 16:25	R232156
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		39	mg/L	1	05/02/2017 1:02	R232262
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Calcium	NELAP	0.050	S	370	mg/L	1	04/28/2017 18:49	129686
Magnesium	NELAP	0.050		8.46	mg/L	1	04/28/2017 18:49	129686
Potassium	NELAP	1.00		45.6	mg/L	10	05/01/2017 18:42	129686
Sodium	NELAP	0.050	S	65.1	mg/L	1	04/28/2017 18:49	129686
MS QC limits for Ca & Na are not	applicable due to high s	ample/spike rat	io.					
SW-846 3005A, 6020A, META	ALS BY ICPMS (TOT)	AL)						
Antimony	NELAP	1.0		3.2	µg/L	5	05/02/2017 12:15	129687
Arsenic	NELAP	1.0		31.1	µg/L	5	05/02/2017 12:15	129687
Barium	NELAP	1.0		59.6	µg/L	5	05/02/2017 12:15	129687
Beryllium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:15	129687
Boron	NELAP	500	S	28300	µg/L	100	05/03/2017 12:18	129687
Cadmium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:15	129687
Coholt	NELAP	1.0		2.1	µg/L	5	05/02/2017 12:15	129687
		1.0		< 1.0	µg/L	5	05/02/2017 12:15	12900/
	INELAP	1.0		1.2	µg/L	5 5	05/02/2017 12:15	129007
Molybdenum		1.U 20.0	S	2400 103	μg/L μα/l	5 100	05/02/2017 12.15	129007
Selenium	NELA	<u>20.0</u> 1 0	0	8.6	µ9/⊏ ⊔а/I	5	05/02/2017 12:15	129687
Thallium	NELAP	1.0		٥.٥ ح 1.0	rg/⊏ ua/l	5	05/02/2017 12:15	129687
					~ 5 , –	5		

Client: Natural Res	ource Technology, Inc.			Work Order: 17040224					
Client Project: Hennepin P	ond 1 & 2 Additional Te	esting			R	eport Date: 08-May-17			
Lab ID: 17040224-0	002		Client Sam	ple ID: LPZ	Z-1				
Matrix: LEACHATE		Collection Date: 04/25/2017 17:34							
Analyses	Certification	RL Qu	al Result	Units	DF	Date Analyzed Batch			
SW-846 3005A, 6020A, ME	TALS BY ICPMS (TOTAL	.)							
MS QC limits for B and Mo are not applicable due to high sample/spike ratio.									
SW-846 7470A (TOTAL)									

Lead

Lithium

Selenium

Thallium

Molybdenum

NELAP

NELAP

NELAP

NELAP

1.0

1.0

1.0

1.0

1.0

8.9

52.0

264

112

< 1.0

µg/L

µg/L

µg/L

µg/L

µg/L

5

5

5

5

5

Client: Natural Reso	ource Technology, I	nc.				W	ork Order: 170402	224
Client Project: Hennepin Pc	ond 1 & 2 Additional	Testina				Re	eport Date: 08-May	/-17
I ab ID· 17040224-00	13	. coting		Client Sam	nle ID• D7	7_3	1	
Lab ID: 17040224-00	5			Chent Sam	pie ID. LFZ			
Matrix: LEACHATE				Collection	Date: 04/	25/2017	18:00	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASUR	REMENTS							
Depth to leachate from measuri	ing	0		11.02	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500								
pH		1 00		10.0		1	04/25/2017 18:00	R232332
STANDARD METHODS 213		1.00		10.0		•	04/20/2011 10:00	11202002
Turbidity		1.0		< 1.0	NTU	1	04/25/2017 18.00	R232332
STANDARD METHODS 18T				\$ 1.0		•	0 11 20/2011 10:00	11202002
Oxidation-Reduction Potential		-300		-87	mV	1	04/25/2017 18.00	R232332
STANDARD METHODS 2510						•	0.120.2011 10100	
Conductivity		1		688	uS/cm	1	04/25/2017 18.00	R232332
STANDARD METHODS 2550		•			μολοιτί	•	0 1120/2011 10:00	11202002
Temperature		0		17 93	°C	1	04/25/2017 18:00	R232332
STANDARD METHODS 4500				11.00	0	•	0 1120/2011 10:00	11202002
Oxygen Dissolved		1 00		< 1.00	ma/l	1	04/25/2017 18:00	R232332
STANDARD METHODS 2320) B			4 1100	<u>9</u> -	•	0.120.2011 10100	
Alkalinity Carbonate (as CaCO	3) NELAP	0		52	ma/l	1	05/02/2017 16:35	R232320
STANDARD METHODS 2320		-				-		
Alkalinity, Bicarbonate (as CaC	O3) NELAP	0		0	ma/L	1	05/02/2017 16:35	R232319
STANDARD METHODS 2540		-		-		-		
Total Dissolved Solids	NELAP	20		768	ma/L	1	04/28/2017 14:55	R232219
SW-846 9036 (TOTAL)					5			
Sulfate	NELAP	100		375	ma/L	10	05/02/2017 1:37	R232246
SW-846 9214 (TOTAL)					5			
Fluoride	NELAP	0.10		< 0.10	ma/L	1	04/28/2017 16:29	R232156
SW-846 9251 (TOTAL)					5			
Chloride	NELAP	5		7	mg/L	1	05/02/2017 1:10	R232262
SW-846 3005A, 6010B, MFT	ALS BY ICP (TOTAL)			0			
Calcium	NELAP	0.050		214	mg/L	1	04/28/2017 19:00	129686
Magnesium	NELAP	0.050		0.956	mg/L	1	04/28/2017 19:00	129686
Potassium	NELAP	0.500		13.4	mg/L	5	05/01/2017 18:53	129686
Sodium	NELAP	0.050		7.40	mg/L	1	04/28/2017 19:00	129686
SW-846 3005A, 6020A, MET	ALS BY ICPMS (TOT	AL)						
Antimony	NELAP	1.0		4.1	µg/L	5	05/02/2017 12:47	129687
Arsenic	NELAP	1.0		12.3	µg/L	5	05/02/2017 12:47	129687
Barium	NELAP	1.0		25.4	µg/L	5	05/02/2017 12:47	129687
Beryllium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:47	129687
Boron	NELAP	25.0		21900	µg/L	5	05/04/2017 10:36	129687
Cadmium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:47	129687
Chromium	NELAP	1.0		31.7	µg/L	5	05/02/2017 12:47	129687
Cobalt	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:47	129687

05/02/2017 12:47 129687

05/02/2017 12:47 129687

05/02/2017 12:47 129687

05/02/2017 12:47 129687

129687

05/02/2017 12:47

Client: Natural	Client: Natural Resource Technology, Inc.				Work Order: 17040224				
Client Project: Hennep	in Pond 1 & 2 Additional Te	sting				Re	port Date: 08-May	-17	
Lab ID: 1704022	24-003			Client Samp	ole ID: LPZ	-3			
Matrix: LEACHA	Matrix: LEACHATE				Collection Date: 04/25/2017 18:00				
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.20		< 0.20	µg/L	1	05/01/2017 8:12	129707	

Client:	Natural Resour	ce Technology, Inc			Work Order: 17040224				
Client Project:	Hennepin Pond	1 & 2 Additional T	esting				R	eport Date: 08-May-17	
Lab ID:	17040224-005				Client Samp	ole ID: LPZ	2-13		
Matrix: LEACHATE					Collection Date: 04/25/2017 13:07				
An	alyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch	
FIELD ELEVA	TION MEASURE	MENTS							
Depth to leacha point	ate from measuring		0		5.59	ft	1	04/25/2017 0:00 R232332	

Client:	Natural Resource	ce Technology, Inc.			Work Order: 17040224				
Client Project:	Hennepin Pond	1 & 2 Additional Te	sting				Re	port Date: 08-May-1	7
Lab ID:	17040224-006				Client Samp	le ID: LPZ	-15		
Matrix: LEACHATE					Collection Date: 04/25/2017 13:10				
Aı	nalyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ba	atch
FIELD ELEVA	TION MEASURE	MENTS							
Depth to leach point	ate from measuring		0		5.59	ft	1	04/25/2017 0:00 R2	232332

Work Order: 17040224

Client: Natural Resour	rce Technology, Ind	C.	Work Order: 17040224					24
Client Project: Hennenin Pono	1 1 & 2 Additional [¬]	Testina				Re	eport Date: 08-May	/-17
Lab ID: 17040224 007		coung		Client Som	alo ID• D7	17		17
Lab ID: 17040224-007				Chefft Samj		-17		
Matrix: LEACHATE				Collection	Date: 04/	25/2017	18:44	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
FIELD ELEVATION MEASURE	MENTS							
Depth to leachate from measuring point		0		13.93	ft	1	04/25/2017 0:00	R232332
STANDARD METHOD 4500-H	B FIELD							
рН		1.00		10.0		1	04/25/2017 18:44	R232332
STANDARD METHODS 2130	B FIELD							
Turbidity		1.0		28	NTU	1	04/25/2017 18:44	R232332
STANDARD METHODS 18TH	ED. 2580 B FIELD							
Oxidation-Reduction Potential		-300		-163	mV	1	04/25/2017 18:44	R232332
STANDARD METHODS 2510 B	S FIELD							
Conductivity		1		1780	µS/cm	1	04/25/2017 18:44	R232332
STANDARD METHODS 2550 B	S FIELD							
Temperature		0		20.48	°C	1	04/25/2017 18:44	R232332
STANDARD METHODS 4500-C) G FIELD							
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	04/25/2017 18:44	R232332
STANDARD METHODS 2320 B	5							
Alkalinity, Carbonate (as CaCO3)	NELAP	0		80	mg/L	1	05/02/2017 16:42	R232320
STANDARD METHODS 2320 B	3 (TOTAL)							
Alkalinity, Bicarbonate (as CaCO3) NELAP	0		0	mg/L	1	05/02/2017 16:42	R232319
STANDARD METHODS 2540 C	(TOTAL)							
Total Dissolved Solids	NELAP	20		2090	mg/L	1	05/01/2017 13:34	R232278
SW-846 9036 (TOTAL)								
Sulfate	NELAP	500		1270	mg/L	50	05/03/2017 16:24	R232369
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		< 0.10	mg/L	1	05/02/2017 13:17	R232279
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		< 5	mg/L	1	05/02/2017 1:45	R232262
SW-846 3005A, 6010B, METAL	S BY ICP (TOTAL)							
Calcium	NELAP	0.050	S	578	mg/L	1	05/02/2017 10:20	129737
Magnesium	NELAP	0.050		1.32	mg/L	1	05/02/2017 10:20	129737
Potassium	NELAP	0.500	S	26.5	mg/L	5	05/02/2017 12:51	129737
Sodium	NELAP	0.050		16.1	mg/L	1	05/02/2017 10:20	129737
MS QC limits for K are not applicabl	le due to high sample/s	pike ratio.						
MS QC limits for Ca are not applicat	ble due to high sample/	spike ratio.						
SW-846 3005A, 6020A, METAL	S BY ICPMS (TOTA	L)				_		400700
Antimony		1.0		1.0	µg/L	5	05/02/2017 18:08	129/38
Arsenic		1.0		26.5	µg/∟	5	05/02/2017 18:08	129738
Benyllium		1.0		92.U - 1 0	µg/L ug/l	5	05/02/2017 10.08	129130
Boron		1.U 25.0	S	< 1.U 26000	μg/L μα/l	5	05/03/2017 14.13	129738
Cadmium	NELAP	<u>2</u> 0.0 1 0	5	۲0300 ۲۱۵	на,г Па\I	5	05/02/2017 18:08	129738
Chromium	NELAP	1.0		3.8	µa/l	5	05/03/2017 14:13	129738
Cobalt	NELAP	1.0		1.2	µa/L	5	05/03/2017 14:13	129738
Lead	NELAP	1.0		7.7	µg/L	5	05/02/2017 18:08	129738
Lithium		1.0		97.5	μg/L	5	05/03/2017 14:13	129738
Molybdenum	NELAP	1.0		289	µg/L	5	05/02/2017 18:08	129738
Selenium	NELAP	1.0		118	µg/L	5	05/02/2017 18:08	129738

Client: Natural Res	source Technology, Inc.			Work Order: 17040224					
Client Project: Hennepin F	ond 1 & 2 Additional Te	esting				Re	port Date: 08-May	/-17	
Lab ID: 17040224-()07			Client Samp	ole ID: LPZ	-17			
Matrix: LEACHATE				Collection Date: 04/25/2017 18:44					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 3005A, 6020A, ME	TALS BY ICPMS (TOTAL	_)							
Thallium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 18:08	129738	
MS QC limits for B are not appl	MS QC limits for B are not applicable due to high sample/spike ratio.								
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20		< 0.20	ua/l	1	05/01/2017 14.18	129736	

Client Project: Hennepin Pand 1 & 2 Additional Testing Cuitert Sample ID: [4 DUP Lab ID: 17040224-008 Citent Sample ID: [4 DUP Matrix: LEACHATE Collection Date: 04/25/2017 17:22 Analyses Certification Result Units DF Date Analyzed Batch FIELD ELEVATION MEASUREMENTS Depth to lead-tale from measuring 0 11:00 Result Units DEPth ID:000000000000000000000000000000000000	Client: Natural Reso				W	ork Order: 170402	24			
Tub ID: TUB ID: <t< td=""><td>Client Project: Hennepin Po</td><td>and 1 & 2 Additional T</td><td>estina</td><td></td><td></td><td></td><td>Re</td><td>eport Date: 08-May</td><td>-17</td></t<>	Client Project: Hennepin Po	and 1 & 2 Additional T	estina				Re	eport Date: 08-May	-17	
Matrix LEACHATE Collection Date: 04/25/2017 17:22 Analyses Certification RL Qual Result Units DF Date Analyzed Batch FIELD ELEVATION MEASUREMENTS Dept to leacehase from measuring 0 11.10 ft 1 04/25/2017 17:22 PH 1.00 7.60 1 04/25/2017 17:22 R232332 STANDARD METHOD 500-H B FIELD Image: training trainin training training training training training training traini	Lah ID: 17040224-00)8	county		Client Sample ID: 14 DUP					
Marine: Description RL Qual Result Units DF Date Analyzed Batch FELD ELEVATION MEASUREMENTS Depth to leachate from measuring 0 11.10 ft 1 0.4/25/2017 07.00 R232332 STANDARD METHODS 2130 B FELD 10 7.60 1 0.4/25/2017 17.22 R232332 STANDARD METHODS 137H ED. 2580 B FIELD					Collection	Doto: $04/$	25/2017	17.00		
Analyses Certification RI. Qual Result Units DF Date Analyzed Batch FIELD ELEXPATION MESAUREMENTS 0 11.10 ft 1 04/25/2017 0.00 R232332 point 1.00 7.60 1 04/25/2017 17.22 R232332 pH 1.00 7.60 1 04/25/2017 17.22 R232332 STANDARD METHODS 18TH ED. 2580 B FIELD 0 1.0 <1.0	Maurix; LEACHATE				Conection	Date: 04/	25/2017	17:22		
FIELD ELEVATION MEASUREMENTS Depth bleachet from measuring 0 11.10 ft 1 0.4/25/2017 0.00 R32332 STANDARD METHOD 500-H B FIELD Turbidity STANDARD METHOD 5100 FIELD Turbidity 10 0.4/25/2017 17.22 R32332 STANDARD METHODS 2100 B FIELD Conduction Potential	Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
Depth to leachaid: form measuring 0 11.10 ft 1 0.4425/2017 0:00 R232332 STANDARD METHOD 4500-H B FIELD	FIELD ELEVATION MEASUR	REMENTS								
STANDARD METHOD 4500-H B FIELD pH 1.00 7.60 1 04/25/2017 17:22 R23232 STANDARD METHODS 2130 B FIELD Tunidity 1.0 STANDARD METHODS 18TH ED. 2560 B FIELD Conductivity 1 04/25/2017 17:22 R232322 STANDARD METHODS 2510 B FIELD Conductivity 1 04/25/2017 17:22 R23232 STANDARD METHODS 2500 B FIELD Conductivity 1 04/25/2017 17:22 R23232 STANDARD METHODS 2500 G FIELD Conductivity 0 0 mg/L 1 04/25/2017 17:22 R23232 STANDARD METHODS 2500 G FIELD Conductivity 0 0 mg/L 1 04/25/2017 16:47 R23232 STANDARD METHODS 2520 G (TOTAL) Total Oxford MetHODS 2520 G (TOTAL) <td>Depth to leachate from measuri point</td> <td>ng</td> <td>0</td> <td></td> <td>11.10</td> <td>ft</td> <td>1</td> <td>04/25/2017 0:00</td> <td>R232332</td>	Depth to leachate from measuri point	ng	0		11.10	ft	1	04/25/2017 0:00	R232332	
pH 1.00 7.60 1 04/25/2017 17:22 R232332 STANDARD METHODS 2130 B FIELD 1.0 <1.0	STANDARD METHOD 4500-	H B FIELD								
STANDARD METHODS 2130 B FIELD Turbidity 1.0 <1.0 NTU 1 04/25/2017 17:22 R23232 STANDARD METHODS 2510 B FIELD Conductivity 1 940 µStem 1 04/25/2017 17:22 R23232 STANDARD METHODS 2510 B FIELD Conductivity 1 940 µStem 1 04/25/2017 17:22 R23232 STANDARD METHODS 2550 B FIELD Termperature 0 19.54 °C 1 04/25/2017 17:22 R23232 STANDARD METHODS 3500 G FIELD Orgen, Disolved 1.00 <1.00 <1.0 04/25/2017 17:22 R232320 STANDARD METHODS 2520 B (TOTAL) Alkelinity, Bicarbonate (as CaCO3) NELAP 0 0 mg/L 1 05/02/2017 16:47 R232319 STANDARD METHODS 2520 B (TOTAL) Alkelinity, Bicarbonate (as CaCO3) NELAP 0 282 mg/L 1 04/28/2017 16:37 R232246 <th col<="" td=""><td>рН</td><td></td><td>1.00</td><td></td><td>7.60</td><td></td><td>1</td><td>04/25/2017 17:22</td><td>R232332</td></th>	<td>рН</td> <td></td> <td>1.00</td> <td></td> <td>7.60</td> <td></td> <td>1</td> <td>04/25/2017 17:22</td> <td>R232332</td>	рН		1.00		7.60		1	04/25/2017 17:22	R232332
Turbidity 1.0 <1.0 NTU 1 04/25/2017 17:22 R232332 STANDARD METHODS 18TH ED. 2580 B FIELD	STANDARD METHODS 213	0 B FIELD								
STANDARD METHODS 18TH ED. 2580 B FIELD Oxidation-Reduction Potentinal	Turbidity		1.0		< 1.0	NTU	1	04/25/2017 17:22	R232332	
Oxidation-Reduction Potential -300 -149 mV 1 04/25/2017 17:22 R232332 STANDARD METHODS 2510 B FIELD 1 940 µSicm 1 04/25/2017 17:22 R232332 STANDARD METHODS 2500 B FIELD 1 04/25/2017 17:22 R232332 STANDARD METHODS 3500 B FIELD 0 19.54 °C 1 04/25/2017 17:22 R232332 STANDARD METHODS 320 B 0 mg/L 1 04/25/2017 17:22 R232332 STANDARD METHODS 320 B (TOTAL) 0 0 mg/L 1 05/02/2017 16:47 R232319 STANDARD METHODS 2320 B (TOTAL) 1 05/02/2017 16:47 R232319 STANDARD METHODS 2300 B (TOTAL) 1 04/28/2017 14:56 R23219 STANDARD METHODS 320 B (TOTAL) 1 04/28/2017 14:56 R23219 StanDARD METHODS 240 C (TOTAL) 1 04/28/2017 14:56 R23219 StanDARD METHODS 320 B (TOTAL) 1 04/28/2017 14:56 R232246 SW-846 9251 (TOTAL) 1 <td>STANDARD METHODS 18TH</td> <td>HED. 2580 B FIELD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	STANDARD METHODS 18TH	HED. 2580 B FIELD								
STANDARD METHODS 2510 B FIELD Conductivity 1 940 µS/cm 1 04/25/2017 17:22 R232332 STANDARD METHODS 4500-0G FIELD 0 1 04/25/2017 17:22 R232332 STANDARD METHODS 4500-0G FIELD 0 mg/L 1 04/25/2017 17:22 R232332 STANDARD METHODS 4500-0G FIELD 0 mg/L 1 04/25/2017 17:22 R232332 STANDARD METHODS 230 B NELAP 0 0 mg/L 1 04/25/2017 17:22 R232332 STANDARD METHODS 2320 B (TOTAL) NELAP 0 282 mg/L 1 05/02/2017 16:47 R232319 STANDARD METHODS 2540 C (TOTAL) 0 286 mg/L 1 04/28/2017 14:56 R232219 Strahol ARD METHODS 2540 C (TOTAL) 0 388 mg/L 1 04/28/2017 14:56 R232219 Strahol ARD METHODS 2540 C (TOTAL) 0 0.26 mg/L 1 04/28/2017 16:34 R232216 SW-846 9251 (TOTAL) 0 0.26 mg/L 1 04/28/2017 16:31<	Oxidation-Reduction Potential		-300		-149	mV	1	04/25/2017 17:22	R232332	
Conductivity 1 940 µS/cm 1 04/25/2017 17:22 R232332 STANDARD METHODS 2550 B FIELD	STANDARD METHODS 2510) B FIELD								
STANDARD METHODS 2550 B FIELD Temperature 0 19.54 °C 1 04/25/2017 17.22 R232332 STANDARD METHODS 4500-O G FIELD Oxygen, Dissolved 100 STANDARD METHODS 2300 B Alkalinity, Carbonate (as CaCO3) NELAP 0 or ng/L 1 06/02/2017 16:47 R232332 STANDARD METHODS 2320 B (TOTAL) Alkalinity, Carbonate (as CaCO3) NELAP 0 28 mg/L 1 06/02/2017 16:47 R232319 STANDARD METHODS 2540 (TOTAL) Total Dissolved Solids NELAP 20 926 mg/L 1 06/02/2017 16:47 R23219 SW-346 9236 (TOTAL) Total Dissolved Solids NELAP 0 0 0 00 0 0 0	Conductivity		1		940	µS/cm	1	04/25/2017 17:22	R232332	
Temperature 0 19.54 °C 1 04/25/2017 17:22 R232332 STANDARD METHODS 4500-0 G FIELD Overall 0 mg/L 1 04/25/2017 17:22 R232332 STANDARD METHODS 2320 B	STANDARD METHODS 2550) B FIELD								
STANDARD METHODS 4500-0 G FIELD Oxygen, Dissolved 1.00 Colspan="2"> STANDARD METHODS 2320 B Alkalinity, Carbonate (as CaCO3) NELAP 0 0 mg/L 1 05/02/2017 16:47 R232320 STANDARD METHODS 2320 B (TOTAL) Alkalinity, Carbonate (as CaCO3) NELAP 0 282 mg/L 1 05/02/2017 16:47 R23232 STANDARD METHODS 2320 B (TOTAL) Total Dissolved Solids NELAP 0 282 mg/L 1 04/28/2017 16:47 R23232 STANDARD METHODS 2340 C (TOTAL) Total Dissolved Solids NELAP 0 926 mg/L 1 04/28/2017 16:47 R23232 SW-846 9305 (TOTAL) Total SW-846 9214 (TOTAL) Fluoride NELAP 0 0 <th colsp<="" td=""><td>Temperature</td><td></td><td>0</td><td></td><td>19.54</td><td>°C</td><td>1</td><td>04/25/2017 17:22</td><td>R232332</td></th>	<td>Temperature</td> <td></td> <td>0</td> <td></td> <td>19.54</td> <td>°C</td> <td>1</td> <td>04/25/2017 17:22</td> <td>R232332</td>	Temperature		0		19.54	°C	1	04/25/2017 17:22	R232332
Oxygen, Dissolved 1.00 <1.00 mg/L 1 04/25/2017 17:22 R232332 STANDARD METHODS 2320 B NELAP 0 0 mg/L 1 05/02/2017 16:47 R232320 STANDARD METHODS 2320 B (TOTAL) 0 282 mg/L 1 05/02/2017 16:47 R232320 STANDARD METHODS 2320 B (TOTAL) 0 282 mg/L 1 05/02/2017 16:47 R232319 StanDARD METHODS 2540 C (TOTAL) 0 388 mg/L 1 04/28/2017 16:37 R232219 SW-846 9036 (TOTAL) 0 5/02/2017 1:0:31 R232262 SW-846 9214 (TOTAL) 04/28/2017 19:03 128686 SW-846 9214 (TOTAL)	STANDARD METHODS 4500)-O G FIELD								
STANDARD METHODS 2320 B Alkalinity. Carbonate (as CaCO3) NELAP 0 mg/L 1 05/02/2017 16:47 R232320 STANDARD METHODS 230 B (TOTAL)	Oxygen, Dissolved		1.00		< 1.00	mg/L	1	04/25/2017 17:22	R232332	
Akkalinity, Carbonate (as CaCO3) NELAP 0 mg/L 1 05/02/2017 16:47 R232320 STANDARD METHODS 2320 B (TOTAL)	STANDARD METHODS 2320) B								
STANDARD METHODS 2320 B (TOTAL) Alkalinity, Bicarbonate (as CaCO3) NELAP 0 282 mg/L 1 05/02/2017 18:47 R232319 STANDARD METHODS 2540 C (TOTAL) Total Dissolved Solids NELAP 20 926 mg/L 1 04/28/2017 18:47 R232219 SW-846 9036 (TOTAL) SW-846 9036 (TOTAL) SW-846 9036 (TOTAL) Flucinde NELAP 0.10 0.26 mg/L 1 04/28/2017 18:3 R2322166 SW-846 9251 (TOTAL) Chloride NELAP 0.10 0.26 mg/L 1 04/28/2017 18:3 R332262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) Calcium NELAP 0.050 185 mg/L 1 04/28/2017 19:03 129686 Magnesium NELAP 0.050 9.87 mg/L 1 04/28/2017 19:03 129686 Magnesium	Alkalinity, Carbonate (as CaCO	3) NELAP	0		0	mg/L	1	05/02/2017 16:47	R232320	
Alkalinity, Bicarbonate (as CaC03) NELAP 0 282 mg/L 1 05/02/2017 16:47 R232319 STANDARD METHODS 2540 C (TOTAL) Total Disolved Solids NELAP 20 926 mg/L 1 04/28/2017 14:56 R232219 SW-846 9036 (TOTAL) Sulfate NELAP 100 388 mg/L 10 05/02/2017 2:01 R232246 SW-846 9214 (TOTAL) Fluoride NELAP 0.10 0.26 mg/L 1 04/28/2017 16:34 R232156 SW-846 9251 (TOTAL) E E Choride NELAP 5 11 mg/L 1 04/28/2017 16:34 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) E <	STANDARD METHODS 2320) B (TOTAL)								
STANDARD METHODS 2540 C (TOTAL) Total Dissolved Solids NELAP 20 926 mg/L 1 04/28/2017 14:56 R323219 SW-846 9036 (TOTAL) Suffate NELAP 100 388 mg/L 10 0/28/2017 12:01 R322246 SW-846 9214 (TOTAL) Fluoride NELAP 0.10 0.26 mg/L 1 0/4/28/2017 16:34 R322562 SW-846 90251 (TOTAL) Chloride NELAP 0.050 185 mg/L 1 0/4/28/2017 15:3 R322562 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) Calcium NELAP 0.050 185 mg/L 1 0/4/28/2017 10:31 29686 SW-846 3005A, 6010B, METALS BY ICPMS (TOTAL) C Calcium NELAP 1.0 <td>Alkalinity, Bicarbonate (as CaCo</td> <td>O3) NELAP</td> <td>0</td> <td></td> <td>282</td> <td>mg/L</td> <td>1</td> <td>05/02/2017 16:47</td> <td>R232319</td>	Alkalinity, Bicarbonate (as CaCo	O3) NELAP	0		282	mg/L	1	05/02/2017 16:47	R232319	
Total Dissolved Solids NELAP 20 926 mg/L 1 04/28/2017 14:56 R232219 SW-846 9036 (TOTAL)	STANDARD METHODS 2540) C (TOTAL)								
SW-846 9036 (TOTAL) Sulfate NELAP 100 388 mg/L 10 050/2017 2:01 R232246 SW-846 9214 (TOTAL) Fluoride NELAP 0.10 0.26 mg/L 1 04/28/2017 16:34 R232156 SW-846 9251 (TOTAL) Chloride NELAP 5 11 mg/L 1 05/02/2017 1:53 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) U U 04/28/2017 19:03 129686 Calcium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Sodium NELAP 0.050 28.7 mg/L 5 05/01/2017 18:56 129686 Sw-846 3005A, 6020A, METALS BY ICPMS (TOTAL) NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Barium	Total Dissolved Solids	NELAP	20		926	mg/L	1	04/28/2017 14:56	R232219	
Sulfate NELAP 100 388 mg/L 10 05/02/2017 2:01 R232246 SW-846 9214 (TOTAL) I NELAP 0.10 0.26 mg/L 1 04/28/2017 16:34 R232156 SW-846 9251 (TOTAL) Img/L 1 05/02/2017 15:35 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) Img/L 1 04/28/2017 19:03 129686 Magnesium NELAP 0.050 185 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 12:55 129687 Arsenic NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687	SW-846 9036 (TOTAL)									
SW-846 9214 (TOTAL) Fluoride NELAP 0.10 0.26 mg/L 1 04/28/2017 16:34 R232156 SW-846 9251 (TOTAL) Chloride NELAP 5 11 mg/L 1 04/28/2017 16:34 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) 0.550 27.6 mg/L 1 04/28/2017 19:03 129686 Otassium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Sodium NELAP 0.050 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 21.0 µg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 41.0 µg/L	Sulfate	NELAP	100		388	mg/L	10	05/02/2017 2:01	R232246	
Fluoride NELAP 0.10 0.26 mg/L 1 04/28/2017 16:34 R232156 SW-846 9251 (TOTAL) R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) 05/02/2017 15:3 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) 04/28/2017 19:03 129686 Magnesium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.050 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Sw-846 3005A, 6020A, METALS BY ICPMS (TOTAL) 129686 Sw-846 3005A, 6020A, METALS BY ICPMS (TOTAL) 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 27.0 µg/L 5 05/0	SW-846 9214 (TOTAL)									
SW-846 9251 (TOTAL) Chloride NELAP 5 11 mg/L 1 05/02/2017 1:53 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) R232262 Calcium NELAP 0.050 185 mg/L 1 04/28/2017 19:03 129686 Magnesium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.500 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Swe846 3005A, 6020A, METALS BY ICPMS (TOTAL) 04/28/2017 19:03 129686 Swe846 3005A, 6020A, METALS BY ICPMS (TOTAL) 10 46.3 mg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 <1.0	Fluoride	NELAP	0.10		0.26	mg/L	1	04/28/2017 16:34	R232156	
Chloride NELAP 5 11 mg/L 1 05/02/2017 1:53 R232262 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) 1 04/28/2017 19:03 129686 Magnesium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.050 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Swe46 3005A, 6020A, METALS BY ICPMS (TOTAL) 1 04/28/2017 12:55 129687 Arsenic NELAP 1.0 3.0 μg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 27.0 μg/L 5 05/02/2017 12:55 129687 Beryllium NELAP 1.0 46.3 μg/L 5 05/02/2017 12:55 129687 Cadmium NELAP 1.0 <1.0	SW-846 9251 (TOTAL)									
SW-846 3005A, 6010B, METALS BY ICP (TOTAL) Calcium NELAP 0.050 185 mg/L 1 04/28/2017 19:03 129686 Magnesium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.500 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Sw-846 3005A, 6020A, METALS BY ICPMS (TOTAL) 0 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Boron NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Goron NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Cobalt	Chloride	NELAP	5		11	mg/L	1	05/02/2017 1:53	R232262	
Calcium NELAP 0.050 185 mg/L 1 04/28/2017 19:03 129686 Magnesium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.500 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL) 1 04/28/2017 12:55 129687 Arsenic NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 27.0 µg/L 5 05/02/2017 12:55 129687 Boron NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Boron NELAP 1.0 <1.0	SW-846 3005A, 6010B, MET	ALS BY ICP (TOTAL)								
Magnesium NELAP 0.050 27.6 mg/L 1 04/28/2017 19:03 129686 Potassium NELAP 0.500 9.87 mg/L 5 05/01/2017 18:56 129686 Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 Sw-846 3005A, 6020A, METALS BY ICPMS (TOTAL) NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Boron NELAP 1.0 <1.0	Calcium	NELAP	0.050		185	mg/L	1	04/28/2017 19:03	129686	
PotassiumNELAP0.5009.87mg/L505/01/2017 18:56129686SodiumNELAP0.05048.8mg/L104/28/2017 19:03129686SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL)AntimonyNELAP1.03.0µg/L505/02/2017 12:55129687ArsenicNELAP1.027.0µg/L505/02/2017 12:55129687BariumNELAP1.046.3µg/L505/02/2017 12:55129687BoronNELAP1.0<1.0	Magnesium	NELAP	0.050		27.6	mg/L	1	04/28/2017 19:03	129686	
Sodium NELAP 0.050 48.8 mg/L 1 04/28/2017 19:03 129686 SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL) Antimony NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 27.0 µg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Beryllium NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Boron NELAP 1.0 <1.0	Potassium	NELAP	0.500		9.87	mg/L	5	05/01/2017 18:56	129686	
SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL) Antimony NELAP 1.0 3.0 µg/L 5 05/02/2017 12:55 129687 Arsenic NELAP 1.0 27.0 µg/L 5 05/02/2017 12:55 129687 Barium NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Beryllium NELAP 1.0 46.3 µg/L 5 05/02/2017 12:55 129687 Boron NELAP 1.0 <1.0	Sodium	NELAP	0.050		48.8	mg/L	1	04/28/2017 19:03	129686	
AntimonyNELAP1.03.0µg/L505/02/2017 12:55129687ArsenicNELAP1.027.0µg/L505/02/2017 12:55129687BariumNELAP1.046.3µg/L505/02/2017 12:55129687BerylliumNELAP1.0<1.0	SW-846 3005A, 6020A, MET	ALS BY ICPMS (TOTA	L)							
ArsenicNELAP1.027.0µg/L505/02/2017 12:55129687BariumNELAP1.046.3µg/L505/02/2017 12:55129687BerylliumNELAP1.0<1.0	Antimony	NELAP	1.0		3.0	µg/L	5	05/02/2017 12:55	129687	
BariumNELAP1.046.3µg/L505/02/2017 12:55129687BerylliumNELAP1.0<1.0	Arsenic	NELAP	1.0		27.0	µg/L	5	05/02/2017 12:55	129687	
BerylliumNELAP1.0<1.0μg/L505/02/2017 12:55129687BoronNELAP25.023900μg/L505/02/2017 10:44129687CadmiumNELAP1.0<1.0	Barium	NELAP	1.0		46.3	µg/L	5	05/02/2017 12:55	129687	
BoronNELAP25.023900µg/L505/04/2017 10:44129687CadmiumNELAP1.0<1.0	Beryllium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:55	129687	
Cadmium NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Chromium NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Cobalt NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Lead NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Lithium NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Molybdenum NELAP 1.0 48.9 µg/L 5 05/02/2017 12:55 129687 Selenium NELAP 1.0 83.0 µg/L 5 05/02/2017 12:55 129687 Thallium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129687	Boron	NELAP	25.0		23900	µg/L	5	05/04/2017 10:44	129687	
Chromium NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Cobalt NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Lead NELAP 1.0 <1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Lithium NELAP 1.0 48.9 µg/L 5 05/02/2017 12:55 129687 Molybdenum NELAP 1.0 48.9 µg/L 5 05/02/2017 12:55 129687 Selenium NELAP 1.0 48.9 µg/L 5 05/02/2017 12:55 129687 Thallium NELAP 1.0 41.4 µg/L 5 05/02/2017 12:55 129687		NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:55	129687	
Codait NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Lead NELAP 1.0 <1.0	Chromium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:55	129687	
Lead NELAP 1.0 <1.0 µg/L 5 05/02/2017 12:55 129687 Lithium 1.0 48.9 µg/L 5 05/02/2017 12:55 129687 Molybdenum NELAP 1.0 83.0 µg/L 5 05/02/2017 12:55 129687 Selenium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129687 Thallium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129687	Copait	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 12:55	129687	
Indian I.0 48.9 µg/L 5 05/02/2017 12:55 129687 Molybdenum NELAP 1.0 83.0 µg/L 5 05/02/2017 12:55 129687 Selenium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129687 Thallium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129687		NELAP	1.0		< 1.0	µg/L	ວ <i>F</i>	05/02/2017 12:55	12900/	
Norpole NELAF 1.0 63.0 µg/L 5 05/02/2017 12:55 129687 Selenium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129687 Thallium NELAP 1.0 <1.0	Molybdonum		1.0		48.9 22 A	µg/L	5 5	05/02/2017 12:55	120007	
Thallium NELAP 1.0 1.4 µg/L 5 05/02/2017 12:55 129087	Selenium		1.0		03.U 1 <i>1</i>	µy/L	5	05/02/2017 12:55	129007	
	Thallium	NELAP	1.0		< 1.0	µg/∟	5	05/02/2017 12:55	129687	

Client: Na	tural Resource Tech	nology, Inc.	Work Order: 17040224						
Client Project: He	ennepin Pond 1 & 2	Additional Testing	Report Date: 08-May-17						
Lab ID: 17	040224-008			Client Sample ID: L4 DUP					
Matrix: LE	ACHATE		Collection Date: 04/25/2017 17:22						
Analy	ses Certif	ication RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 7470A (T	OTAL)								
Mercury	NE	LAP 0.20		< 0.20	µg/L	1	05/01/2017 8:14	129707	

Lab ID: 17040224-009

Work Order: 17040224

Report Date: 08-May-17

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Matrix: LEACHATE				Collection	Date: 04/	25/2017	19:00	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
STANDARD METHODS 2320 B								
Alkalinity, Carbonate (as CaCO3)	NELAP	0		0	mg/L	1	05/02/2017 16:55	R232320
STANDARD METHODS 2320 B	(TOTAL)							
Alkalinity, Bicarbonate (as CaCO3)	NELAP	0		2	mg/L	1	05/02/2017 16:55	R232319
STANDARD METHODS 2540 C	(TOTAL)							
Total Dissolved Solids	NELAP	20		< 20	mg/L	1	04/28/2017 14:56	R232219
SW-846 9036 (TOTAL)								
Sulfate	NELAP	10		< 10	mg/L	1	05/02/2017 2:04	R232246
SW-846 9214 (TOTAL)								
Fluoride	NELAP	0.10		< 0.10	mg/L	1	04/28/2017 16:41	R232156
SW-846 9251 (TOTAL)								
Chloride	NELAP	5		< 5	mg/L	1	05/02/2017 2:02	R232262
SW-846 3005A, 6010B, METAL	S BY ICP (TOTAL)							
Calcium	NELAP	0.050		0.068	mg/L	1	04/28/2017 19:07	129686
Magnesium	NELAP	0.050		< 0.050	mg/L	1	04/28/2017 19:07	129686
Potassium	NELAP	0.100		< 0.100	mg/L	1	04/28/2017 19:07	129686
Sodium	NELAP	0.050		< 0.050	mg/L	1	04/28/2017 19:07	129686
SW-846 3005A, 6020A, METAL	S BY ICPMS (TOTA	AL)						
Antimony	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Arsenic	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Barium	NELAP	1.0		1.1	µg/L	5	05/02/2017 13:03	129687
Beryllium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Boron	NELAP	25.0		< 25.0	µg/L	5	05/03/2017 12:10	129687
Cadmium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Chromium	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Cobalt	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Lead	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Lithium		1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
Molybdenum	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
	NELAP	1.0		< 1.0	µg/L	5	05/02/2017 13:03	129687
SW-846 7470A (TOTAL)		0.00				4	05/04/00/17 0 / 7	100707
Mercury	NELAP	0.20		< 0.20	µg/L	1	05/01/2017 8:17	129707

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
17040224-001	L4	Leachate	2	04/25/2017 17:22
17040224-002	LPZ-1	Leachate	2	04/25/2017 17:34
17040224-003	LPZ-3	Leachate	2	04/25/2017 18:00
17040224-004	LPZ-5	Leachate	2	04/25/2017 13:30
17040224-005	LPZ-13	Leachate	1	04/25/2017 13:07
17040224-006	LPZ-15	Leachate	1	04/25/2017 13:10
17040224-007	LPZ-17	Leachate	2	04/25/2017 18:44
17040224-008	L4 DUP	Leachate	2	04/25/2017 17:22
17040224-009	Field Blank	Leachate	2	04/25/2017 19:00

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date				
	Test Name			Prep Date/Time	Analysis Date/Time		
17040224-001A	L4	04/25/2017 17:22	04/27/2017 16:40				
	Field Elevation Measurements				04/25/2017 0:00		
	Standard Method 4500-H B Field				04/25/2017 17:22		
	Standard Methods 2130 B Field				04/25/2017 17:22		
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 17:22		
	Standard Methods 2320 B				05/02/2017 16:21		
	Standard Methods 2320 B (Total)				05/02/2017 16:21		
	Standard Methods 2510 B Field				04/25/2017 17:22		
	Standard Methods 2540 C (Total)				04/28/2017 14:54		
	Standard Methods 2550 B Field				04/25/2017 17:22		
	Standard Methods 4500-O G Field				04/25/2017 17:22		
	SW-846 9036 (Total)				05/02/2017 1:02		
	SW-846 9214 (Total)				04/28/2017 16:21		
	SW-846 9251 (Total)				05/02/2017 0:54		
17040224-001B	L4	04/25/2017 17:22	04/27/2017 16:40				
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 18:45		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:38		
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:07		
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/04/2017 10:28		
	SW-846 7470A (Total)			04/28/2017 11:25	05/01/2017 12:14		
17040224-002A	LPZ-1	04/25/2017 17:34	04/27/2017 16:40				
	Field Elevation Measurements				04/25/2017 0:00		
	Standard Method 4500-H B Field				04/25/2017 17:34		
	Standard Methods 2130 B Field				04/25/2017 17:34		
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 17:34		
	Standard Methods 2320 B				05/02/2017 16:29		
	Standard Methods 2320 B (Total)				05/02/2017 16:29		
	Standard Methods 2510 B Field				04/25/2017 17:34		
	Standard Methods 2540 C (Total)				04/28/2017 14:55		
	Standard Methods 2550 B Field				04/25/2017 17:34		
	Standard Methods 4500-O G Field				04/25/2017 17:34		
	SW-846 9036 (Total)				05/03/2017 15:57		
	SW-846 9214 (Total)				04/28/2017 16:25		
	SW-846 9251 (Total)				05/02/2017 1:02		
17040224-002B	LPZ-1	04/25/2017 17:34	04/27/2017 16:40				
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 18:49		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:42		

Dates Report

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:15
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/03/2017 12:18
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:10
17040224-003A	LPZ-3	04/25/2017 18:00	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 18:00
	Standard Methods 2130 B Field				04/25/2017 18:00
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 18:00
	Standard Methods 2320 B				05/02/2017 16:35
	Standard Methods 2320 B (Total)				05/02/2017 16:35
	Standard Methods 2510 B Field				04/25/2017 18:00
	Standard Methods 2540 C (Total)				04/28/2017 14:55
	Standard Methods 2550 B Field				04/25/2017 18:00
	Standard Methods 4500-O G Field				04/25/2017 18:00
	SW-846 9036 (Total)				05/02/2017 1:37
	SW-846 9214 (Total)				04/28/2017 16:29
	SW-846 9251 (Total)				05/02/2017 1:10
17040224-003B	LPZ-3	04/25/2017 18:00	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 19:00
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:53
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:47
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/04/2017 10:36
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:12
17040224-004A	LPZ-5	04/25/2017 13:30	04/27/2017 16:40		
	Standard Methods 2320 B (Total)				05/02/2017 14:13
	Standard Methods 2540 C (Total)				04/28/2017 14:56
17040224-005A	LPZ-13	04/25/2017 13:07	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
17040224-006A	LPZ-15	04/25/2017 13:10	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
17040224-007A	LPZ-17	04/25/2017 18:44	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 18:44
	Standard Methods 2130 B Field				04/25/2017 18:44
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 18:44
	Standard Methods 2320 B				05/02/2017 16:42
	Standard Methods 2320 B (Total)				05/02/2017 16:42

Dates Report

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	Standard Methods 2510 B Field				04/25/2017 18:44
	Standard Methods 2540 C (Total)				05/01/2017 13:34
	Standard Methods 2550 B Field				04/25/2017 18:44
	Standard Methods 4500-O G Field				04/25/2017 18:44
	SW-846 9036 (Total)				05/03/2017 16:24
	SW-846 9214 (Total)				05/02/2017 13:17
	SW-846 9251 (Total)				05/02/2017 1:45
17040224-007B	LPZ-17	04/25/2017 18:44	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			05/01/2017 11:23	05/02/2017 10:20
	SW-846 3005A, 6010B, Metals by ICP (Total)			05/01/2017 11:23	05/02/2017 12:51
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			05/01/2017 11:25	05/02/2017 18:08
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			05/01/2017 11:25	05/03/2017 14:13
	SW-846 7470A (Total)			05/01/2017 11:03	05/01/2017 14:18
17040224-008A	L4 DUP	04/25/2017 17:22	04/27/2017 16:40		
	Field Elevation Measurements				04/25/2017 0:00
	Standard Method 4500-H B Field				04/25/2017 17:22
	Standard Methods 2130 B Field				04/25/2017 17:22
	Standard Methods 18th Ed. 2580 B Field				04/25/2017 17:22
	Standard Methods 2320 B				05/02/2017 16:47
	Standard Methods 2320 B (Total)				05/02/2017 16:47
	Standard Methods 2510 B Field				04/25/2017 17:22
	Standard Methods 2540 C (Total)				04/28/2017 14:56
	Standard Methods 2550 B Field				04/25/2017 17:22
	Standard Methods 4500-O G Field				04/25/2017 17:22
	SW-846 9036 (Total)				05/02/2017 2:01
	SW-846 9214 (Total)				04/28/2017 16:34
	SW-846 9251 (Total)				05/02/2017 1:53
17040224-008B	L4 DUP	04/25/2017 17:22	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 19:03
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	05/01/2017 18:56
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 12:55
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/04/2017 10:44
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:14
17040224-009A	Field Blank	04/25/2017 19:00	04/27/2017 16:40		
	Standard Methods 2320 B				05/02/2017 16:55
	Standard Methods 2320 B (Total)				05/02/2017 16:55
	Standard Methods 2540 C (Total)				04/28/2017 14:56

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Total)				05/02/2017 2:04
	SW-846 9214 (Total)				04/28/2017 16:41
	SW-846 9251 (Total)				05/02/2017 2:02
17040224-009B	Field Blank	04/25/2017 19:00	04/27/2017 16:40		
	SW-846 3005A, 6010B, Metals by ICP (Total)			04/28/2017 9:04	04/28/2017 19:07
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/02/2017 13:03
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			04/28/2017 9:09	05/03/2017 12:10
	SW-846 7470A (Total)			04/28/2017 15:10	05/01/2017 8:17

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

STANDARD METH	1OD 4500-H	B FIELD								
Batch R232332	SampType:	LCS	Units							
SampID: LCS-R232	2332									Date
Analyses		RI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	Hiah Limit	Analyzed
nH		1.00	Quai	7 02	7 000	0	100.3	99.1	100.9	04/25/2017
рН рН		1.00		7.02	7.000	0	100.0	99.1	100.9	04/26/2017
pH nH		1.00		7.00	7.000	0	100.0	99.1	100.0	04/27/2017
pri		1.00		7.00	7.000	0	100.0	55.1	100.5	04/21/2011
STANDARD METH	10DS 2510 E	B FIELD								
Batch R232332	SampType:	LCS	Units µS/cm							
SampID: LCS-R232	2332									Date
Analyses		RI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	Hiah Limit	Analyzed
Conductivity		1	Quai	1420	1409	0	100.6	90	110	04/27/2017
Conductivity		1		1410	1400	0	100.0	90	110	04/25/2017
Conductivity		I		1410	1403	0	100.5	30	110	04/23/2017
STANDARD METH	HODS 2510 E	B FIELD								
Batch R232332	SampType:	LCS	Units µmhos/c	m						
SampID: LCS-R232	2332									Date
Analyses		RI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	Hiah Limit	Analyzed
Conductivity		10	Quai	1410	1412	0	100 1	90	110	04/26/2017
Conductivity		10		1410	1412	0	100.1	50	110	04/20/2011
STANDARD METH	10DS 2540 C	(TOTAL)								
STANDARD METH Batch R232219	HODS 2540 C SampType:	(TOTAL) MBLK	Units mg/L							
STANDARD METH Batch R232219 SampID: MBLK	HODS 2540 C SampType:	C (TOTAL) MBLK	Units mg/L							Date
STANDARD METH Batch R232219 SampID: MBLK Analyses	IODS 2540 C SampType:	RL	Units mg/L Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved So	IODS 2540 C SampType:	RL	Units mg/L Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved So Total Dissolved So	HODS 2540 C SampType:	K K K K K C C C C C C C C	Units mg/L Qual	Result < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved So Total Dissolved So Total Dissolved So	HODS 2540 C SampType:	KIOTAL) MBLK RL 20 20 20	Units mg/L Qual	Result < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved So Total Dissolved So Total Dissolved So Total Dissolved So	IODS 2540 C SampType: olids olids olids olids	KIOTAL) MBLK RL 20 20 20 20	Units mg/L Qual	Result < 20 < 20 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se	IODS 2540 C SampType: olids olids olids olids olids olids	CITOTAL) MBLK RL 20 20 20 20 20	Units mg/L Qual	Result < 20 < 20 < 20 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se	IODS 2540 C SampType: Dilds Dilds Dilds Dilds Dilds Dilds	RL 20	Units mg/L Qual	Result < 20 < 20 < 20 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved So Total Dissolved So Total Dissolved So Total Dissolved So Total Dissolved So Total Dissolved So	HODS 2540 C SampType: Dlids Dlids Dlids Dlids Dlids Dlids Dlids Dlids Dlids Dlids	trotal) MBLK RL 20 20 20 20 20 20 20 20 20 20	Units mg/L Qual	Result < 20 < 20 < 20 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se SamplD: LCS	ADDS 2540 C SampType: Dolids Dolids Dolids Dolids Dolids Dolids SampType:	Import Import RL 20 20 20	Units mg/L Qual Units mg/L	Result < 20 < 20 < 20 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SamplD: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Batch R232219 SamplD: LCS Analyses	ADDS 2540 C SampType: Dids Dids Dids Dids Dids Dids Dids Dids	E (TOTAL) MBLK RL 20 20 20 20 20 20 20	Units mg/L Qual Units mg/L	Result < 20 < 20 < 20 < 20 < 20 < 20	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Batch R232219 SampID: LCS Analyses Total Dissolved Se	HODS 2540 C SampType: Dids Dids Dids Dids Dids SampType:	Imperation Imperation RL RL 20 20	Units mg/L Qual Units mg/L Units mg/L	Result < 20 < 20 < 20 < 20 < 20 < 20 Result	Spike Spike 1000	SPK Ref Val	%REC %REC 100.2	Low Limit Low Limit 90	High Limit High Limit 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Batch R232219 SampID: LCS Analyses Total Dissolved Se	HODS 2540 C SampType: Dids Dids Dids Dids Dids Dids Dids Dids	Import Import Import Import <td< td=""><td>Units mg/L Qual Units mg/L Qual Qual</td><td>Result < 20 < 20 < 20 < 20 < 20 < 20 Result</td><td>Spike Spike 1000</td><td>SPK Ref Val SPK Ref Val</td><td>%REC %REC 100.2</td><td>Low Limit Low Limit 90</td><td>High Limit High Limit 110</td><td>Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017</td></td<>	Units mg/L Qual Units mg/L Qual Qual	Result < 20 < 20 < 20 < 20 < 20 < 20 Result	Spike Spike 1000	SPK Ref Val SPK Ref Val	%REC %REC 100.2	Low Limit Low Limit 90	High Limit High Limit 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SamplD: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Analyses Total Dissolved Se	ADDS 2540 C SampType: Dids Dids Dids Dids Dids Dids Dids Dids	E (TOTAL) MBLK RL 20 20 20 20 20 20 20 20 20 20	Units mg/L Qual Units mg/L Units mg/L Units mg/L	Result < 20 < 20 < 20 < 20 < 20 Result 1000	Spike Spike 1000	SPK Ref Val	%REC %REC 100.2	Low Limit Low Limit 90	High Limit High Limit 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Batch R232219 SampID: LCSQC	HODS 2540 C SampType: Dids Dids Dids Dids SampType: Dids SampType:	Imperation Imperation RL RL 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Units mg/L Qual Units mg/L Qual Units mg/L	Result < 20 < 20 < 20 < 20 < 20 Result	Spike Spike 1000	SPK Ref Val	%REC %REC 100.2	Low Limit Low Limit 90	High Limit High Limit 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved So Total Dissolved So Batch R232219 SampID: LCS Batch R232219 SampID: LCS	HODS 2540 C SampType: Dids Dids Dids Dids Dids Dids Dids Dids	E (TOTAL) MBLK RL 20 20 20 20 20 20 20 2	Units mg/L Qual Units mg/L Qual Units mg/L Qual Qual	Result < 20 < 20 < 20 < 20 < 20 Result 1000	Spike Spike 1000	SPK Ref Val	%REC %REC 100.2	Low Limit	High Limit High Limit 110 High Limit	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SampID: MBLK Analyses Total Dissolved Sa Total Dissolved Sa Total Dissolved Sa Total Dissolved Sa Total Dissolved Sa Batch R232219 SampID: LCS Malyses SampID: LCSQC Analyses Total Dissolved Sa	HODS 2540 C SampType: Didds Didds Didds Didds Didds Didds Didds SampType: Didds	E (TOTAL) MBLK RL 20 20 20 20 20 20 20 20 20 20	Units mg/L Qual Units mg/L Units mg/L Units mg/L	Result < 20 < 20 < 20 < 20 < 20 Result 1000 Result 986	Spike Spike 1000 Spike 1000	SPK Ref Val	%REC %REC 100.2 %REC 98.6	Low Limit 90 Low Limit 90	High Limit High Limit 110 High Limit 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017 Date Analyzed 04/28/2017
STANDARD METH Batch R232219 SamplD: MBLK Analyses Total Dissolved Sa Total Dissolved Sa Total Dissolved Sa Total Dissolved Sa Total Dissolved Sa Batch R232219 SamplD: LCS Batch R232219 SamplD: LCS Analyses Total Dissolved Sa Total Dissolved Sa SamplD: LCSQC	HODS 2540 C SampType: Dids Dids Dids Dids Dids Dids Dids SampType: Dids Dids	ITOTAL) RL RL 20 20 20	Units mg/L Qual Units mg/L Units mg/L Qual	Result < 20 < 20 < 20 < 20 < 20 < 20 Result 1000 Result 986 998	Spike Spike 1000 Spike 1000	SPK Ref Val SPK Ref Val 0 SPK Ref Val 0 0	%REC %REC 100.2 %REC 98.6 99.8	Low Limit 90 Low Limit 90	High Limit High Limit 110 High Limit 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017 Date Analyzed
STANDARD METH Batch R232219 SamplD: MBLK Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Analyses Batch R232219 SamplD: LCS Analyses Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se Total Dissolved Se	HODS 2540 C SampType: Dids Dids Dids Dids Dids Dids Dids Dids	: (TOTAL) MBLK RL 20 20 20 20 20 20 20 20 20 20	Units mg/L Qual Units mg/L Qual Qual Qual	Result < 20 < 20 < 20 < 20 < 20 < 20 Result 1000 Result 986 998 984	Spike Spike 1000 Spike 1000 1000	SPK Ref Val SPK Ref Val O SPK Ref Val O SPK Ref Val O O O O O O O O O	%REC %REC %REC %REC %REC %REC %8.6 99.8 98.4	Low Limit 90 Low Limit 90 90 90	High Limit High Limit 110 High Limit 110 110 110	Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017 Date Analyzed 04/28/2017 04/28/2017 04/28/2017 04/28/2017 04/28/2017

Quality Control Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

STANDARD METH	ODS 2540 C	CTOTA	L)								
Batch R232219	SampType:	DUP		Units mg/L					RPD	Limit 5	
SampID: 17040224-	001ADUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Dissolved So	olids		20		908				900.0	0.88	04/28/2017
Batch R232278	SampType:	MBLK		Units mg/L							
SampID: MBLK											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved So	olids		20		< 20						05/01/2017
Total Dissolved So	olids		20		< 20						05/01/2017
Batch R232278	SampType:	LCS		Units mg/L							
SampID: LCS											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved So	olids		20		988	1000	0	98.8	90	110	05/01/2017
Batch R232278	SampType:	LCSQC	;	Units mg/L							
SampID: LCSQC											Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Sc	olids		20	•	972	1000	0	97.2	90	110	05/01/2017
Batch R232278	SampType:	DUP		Units mg/L					RPD	Limit 5	
SampID: 17040224-	007ADUP			-							Date
Analyses			RI.	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Dissolved So	olids		20	¥ 000	2110	Spine			2094	0.86	05/01/2017
SW-846 9036 (TOT	AL)										
Batch R232246	SampType:	MBLK		Units mg/L							
SampID: ICB/MBLK				·							Date
Analyses			RI	Qual	Recult	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	Quai	< 10	Spike		/			05/01/2017
Cullato			10								00/01/2011
Rotob R232246	SampType:	LCS		Units ma/l							
SamplD: ICV/ICS				oog.=							Dete
			DI	0.1	D. 1	G 1	SPK Rof Val	%REC	Low Limit	High Limit	Analyzed
Analyses			KL 10	Qual	Result	Spike		02.6	00	110	05/01/2017
Sullate			10		19	20.00	0	93.0	90	110	05/01/2017
Datah P232246	SamnTyrog	MS		I Inits ma/l							
SamplD: 17040224		100		onno mg/L							
anpib. 17040224-			DI	0 1	D (a ''			Laure Line 2	Llink Linet	Date Analyzed
Analyses			KL 400	Qual	Result	Spike	orr Ker val	%REU			05/00/00/
Sulfate			100		469	100.0	375.4	93.2	85	115	05/02/2017

Quality Control Results

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

SW-846 9036 (TOT	AL)										
Batch R232246	SampType:	MSD		Units mg/L					RPD) Limit 10	
SampID: 17040224-	003AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Sulfate			100		485	100.0	375.4	109.9	468.7	3.50	05/02/2017
Batch R232369 SampID: ICB/MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10						05/03/2017
Batch R232369 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	X	20	20.00	0	100.0	90	110	05/03/2017
SW-846 9214 (TOT	AL)										
Batch R232156 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			BI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	Hiah Limit	Analyzed
Fluoride			0.10	Quai	< 0.10	Spike		,			04/28/2017
Batch R232156 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL.	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10	Q uui	1.00	1.000	0	100.4	90	110	04/28/2017
Batch R232156 SampID: 17040224-	SampType: 008AMS	MS		Units mg/L							Data
Analyses			BI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	Hiah Limit	Analyzed
Fluoride			0.10	Quai	2.30	2.000	0.2570	102.0	85	115	04/28/2017
			0110		2.00	2.000	0.2010	10210			0 1/20/2011
Batch R232156 SampID: 17040224-	SampType: 008AMSD	MSD		Units mg/L					RPD) Limit 10	Date
Analyses			RI	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Fluoride			0.10	2 uui	2.22	2.000	0.2570	98.0	2.298	3.54	04/28/2017
Batch R232279 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10	-	< 0.10						05/02/2017

Work Order: 17040224 Report Date: 08-May-17

Client Project: Hennepin Pond 1 & 2 Additional Testing

Client: Natural Resource Technology, Inc.

SW-846 9214 (TO	ſAL)										
Batch R232279 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride			0.10		0.98	1.000	0	97.6	90	110	05/02/2017
Batch R232279	SampType:	MS		Units mg/L							_
	-007 AIVIS		DI	Qual	Pogult	Spiles	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Fluoride			0.10	Quai	1.89	2.000	0.05300	92.0	85	115	05/02/2017
Batch R232279	SampType:	MSD		Units mg/L					RPD	Limit 10	
SampID: 17040224-	007AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Fluoride			0.10		1.94	2.000	0.05300	94.6	1.892	2.76	05/02/2017
SW-846 9251 (TO	ΓAL)										
Batch R232262 SampID: ICB/MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		< 5						05/01/2017
Batch R232262 SampID: ICV/LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		20	20.00	0	99.9	90	110	05/01/2017
Batch R232262	SampType:	MS		Units mg/L							
A polyage	OUSANIS		ום	Orral	Docult	Smilto	SPK Rof Val	%REC	Low Limit	High Limit	Date Analyzed
Chloride			<u>KL</u> 5	Quai	25 Result	20.00	6.820	92.5	85	115	05/02/2017
Batch R232262 SampID: 17040224-	SampType: 003AMSD	MSD		Units mg/L					RPD) Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Chloride			5		25	20.00	6.820	92.8	25.32	0.24	05/02/2017
Batch R232398	SampType:	MBLK		Units mg/L							
SampID: ICB/MBLK				-							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride			5		< 5						05/03/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

http://www.teklabinc.com/

Work Order: 17040224

SW-846 9251 (TO	ΓAL)									
Batch R232398 SampID: ICV/LCS	SampType:	LCS	Units mg/L							Date
Analyses		RL	Qual	Result Sp	pike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		5		21 20	0.00	0	104.6	90	110	05/03/2017
SW-846 3005A, 60	10B, METAL	S BY ICP (TO	TAL)							
Batch 129686	SampType:	MBLK	Units mg/L							
SampID: MBLK-129	686									Date
Analyses		RL	Qual	Result St	pike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.050		< 0.050 0.05	5000	0	0	-100	100	04/28/2017
Calcium		0.0500		< 0.0500 0.0	5000	0	0	-100	100	04/28/2017
Magnesium		0.0500		< 0.0500 0.05	5000	0	0	-100	100	04/28/2017
Magnesium		0.050		< 0.050 0.05	5000	0	0	-100	100	04/28/2017
Potassium		0.100		< 0.100 0.1	1000	0	0	-100	100	04/28/2017
Potassium		0.100		< 0.100 0.1	1000	0	0	-100	100	04/28/2017
Sodium		0.0500		< 0.0500 0.0	5000	0	0	-100	100	04/28/2017
Sodium		0.050		< 0.050 0.05	5000	0	0	-100	100	04/28/2017
Batch 129686 SampID: LCS-1296	SampType: 86	LCS	Units mg/L							Date
Analyses		RL	Qual	Result St	pike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.0500		2.55 2.5	500	0	102.0	85	115	04/28/2017
Calcium		0.050		2.55 2.5	500	0	102.0	85	115	04/28/2017
Magnesium		0.0500		2.56 2.5	500	0	102.4	85	115	04/28/2017
Magnesium		0.050		2.56 2.5	500	0	102.4	85	115	04/28/2017
Potassium		0.100		2.32 2.5	500	0	92.6	85	115	04/28/2017
Potassium		0.100		2.32 2.5	500	0	92.6	85	115	04/28/2017
Sodium		0.050		2.34 2.5	500	0	93.4	85	115	04/28/2017
Sodium		0.0500		2.34 2.5	500	0	93.4	85	115	04/28/2017
Batch 129686 SampID: 17040224-	SampType: 002BMS	MS	Units mg/L							Date
Analyses		RL	Qual	Result Sp	pike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.050	S	368 2.5	500	370.2	-84.0	75	125	04/28/2017
Magnesium		0.050		10.8 2.5	500	8.455	93.8	75	125	04/28/2017
Potassium		1.00		47.7 2.5	500	45.62	84.8	75	125	05/01/2017
Sodium		0.050	S	66.6 2.5	500	65.09	62.0	75	125	04/28/2017
Batch 129686	SampType:	MSD	Units mg/L					RPD	Limit 20	
SampID: 17040224-	002BMSD		-							Date
Analyses		RL	Qual	Result St	pike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Calcium		0.050	S	374 2.5	500	370.2	152.0	368.1	1.59	04/28/2017
Magnesium		0.050		11.0 2.5	500	8.455	102.6	10.80	2.02	04/28/2017
Potassium		1.00		47.6 2.5	500	45.62	79.2	47.74	0.29	05/01/2017
Sodium		0.050		67.6 2.5	500	65.09	102.0	66.64	1.49	04/28/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

W-846 3005A, 6010B, METALS BY ICP (TOTAL)										
Batch 129737 SampTy	e: MBLK		Units mg/L							
SampID: MBLK-129737										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.050		< 0.050	0.05000	0	45.6	-100	100	05/02/2017
Magnesium		0.050		< 0.050	0.05000	0	0	-100	100	05/02/2017
Potassium		0.100		< 0.100	0.1000	0	0	-100	100	05/02/2017
Sodium		0.050		< 0.050 (0.05000	0	49.6	-100	100	05/02/2017
Batch 129737 SampTy	e: LCS		Units mg/L							
SampID: LCS-129737										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.050		2.55	2.500	0	102.2	85	115	05/02/2017
Magnesium		0.050		2.54	2.500	0	101.5	85	115	05/02/2017
Potassium		0.100		2.37	2.500	0	94.8	85	115	05/02/2017
Sodium		0.050		2.34	2.500	0	93.4	85	115	05/02/2017
Batch 129737 SampTy	oe: MS		Units mg/L							
SampID: 17040224-007BMS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.050	S	579	2.500	577.9	44.0	75	125	05/02/2017
Magnesium		0.050		3.89	2.500	1.323	102.7	75	125	05/02/2017
Potassium		0.500	S	29.8	2.500	26.53	131.2	75	125	05/02/2017
Sodium		0.050		18.6	2.500	16.12	97.6	75	125	05/02/2017
Batch 129737 SampTy	e: MSD		Units mg/L					RPD	Limit 20	
SampID: 17040224-007BMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Calcium		0.050	S	581	2.500	577.9	128.0	579.0	0.36	05/02/2017
Magnesium		0.050		3.91	2.500	1.323	103.4	3.890	0.44	05/02/2017
Potassium		0.500		29.6	2.500	26.53	121.2	29.81	0.84	05/02/2017
Sodium		0.050		18.7	2.500	16.12	102.0	18.56	0.59	05/02/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

Report Date: 08-May-17

SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL)											
Batch 129687 SampTy	pe: MBLK	Units µg/L									
SampID: MBLK-129687									Date		
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Antimony	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Arsenic	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Barium	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Beryllium	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Boron	25.0		< 25.0	25.00	0	0	-100	100	05/01/2017		
Cadmium	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Chromium	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Cobalt	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Lead	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Lithium	1.0		< 1.0	1.000	0	81.2	-100	100	05/01/2017		
Molybdenum	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Selenium	1.0		< 1.0	1.000	0	0	-100	100	05/01/2017		
Thallium	1.0		< 1.0	1.000	0	66.4	-100	100	05/01/2017		

Batch 129687 SampType: LCS

SampID: LCS-129687

Campib. 200-120001								Date
Analyses	RL	Qual Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony	1.0	519	500.0	0	103.8	80	120	05/01/2017
Arsenic	1.0	544	500.0	0	108.9	80	120	05/01/2017
Barium	1.0	2110	2000	0	105.6	80	120	05/01/2017
Beryllium	1.0	57.5	50.00	0	115.0	80	120	05/01/2017
Boron	25.0	575	500.0	0	115.0	80	120	05/01/2017
Cadmium	1.0	52.5	50.00	0	105.0	80	120	05/01/2017
Chromium	1.0	203	200.0	0	101.6	80	120	05/01/2017
Cobalt	1.0	508	500.0	0	101.7	80	120	05/01/2017
Lead	1.0	545	500.0	0	108.9	80	120	05/01/2017
Lithium	1.0	536	500.0	0	107.2	80	120	05/02/2017
Molybdenum	1.0	514	500.0	0	102.9	80	120	05/01/2017
Selenium	1.0	540	500.0	0	108.0	80	120	05/01/2017
Thallium	1.0	264	250.0	0	105.5	80	120	05/01/2017

Units µg/L

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

Report Date: 08-May-17

RPD Limit 20

Batch 129687 SampType: MS Units μg/L SampID: 17040224-002BMS Analyses RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit Analyses	Date nalyzed
Analyses RL Qual Result Spike SPK Ref Val %REC Low Limit High Limit A	nalyzed
	/02/2017
Antimony 1.0 515 500.0 3.232 102.4 75 125 05/	
Arsenic 1.0 553 500.0 31.11 104.4 75 125 05/	/02/2017
Barium 1.0 2130 2000 59.60 103.4 75 125 05/	/02/2017
Beryllium 1.0 49.7 50.00 0 99.3 75 125 05/	/02/2017
Boron 500 S 27000 500.0 28330 -273.2 75 125 05/	/03/2017
Cadmium 1.0 51.2 50.00 0.6986 101.1 75 125 05/	/02/2017
Chromium 1.0 192 200.0 2.088 95.0 75 125 05/	/02/2017
Cobalt 1.0 475 500.0 0.3738 94.9 75 125 05/	/02/2017
Lead 1.0 522 500.0 1.153 104.2 75 125 05/	/02/2017
Lithium 1.0 638 500.0 109.4 105.7 75 125 05/	/02/2017
Molybdenum 20.0 3810 500.0 3403 80.7 75 125 05/	/03/2017
Selenium 1.0 498 500.0 8.572 97.9 75 125 05/	/02/2017
Thallium 1.0 252 250.0 0 100.8 75 125 05/	/02/2017

Batch 129687 SampType: MSD

SampID: 17040224-002BMSD

									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Antimony	1.0		515	500.0	3.232	102.3	515.5	0.17	05/02/2017
Arsenic	1.0		550	500.0	31.11	103.9	553.3	0.52	05/02/2017
Barium	1.0		2120	2000	59.60	103.1	2127	0.26	05/02/2017
Beryllium	1.0		48.9	50.00	0	97.8	49.67	1.53	05/02/2017
Boron	500	S	26700	500.0	28330	-321.1	26960	0.89	05/03/2017
Cadmium	1.0		50.9	50.00	0.6986	100.4	51.23	0.65	05/02/2017
Chromium	1.0		192	200.0	2.088	95.2	192.1	0.20	05/02/2017
Cobalt	1.0		474	500.0	0.3738	94.7	474.9	0.22	05/02/2017
Lead	1.0		519	500.0	1.153	103.6	522.2	0.55	05/02/2017
Lithium	1.0		650	500.0	109.4	108.2	638.0	1.89	05/02/2017
Molybdenum	20.0	S	3770	500.0	3403	74.3	3806	0.84	05/03/2017
Selenium	1.0		504	500.0	8.572	99.0	498.3	1.06	05/02/2017
Thallium	1.0		250	250.0	0	99.8	252.0	0.96	05/02/2017

Units µg/L

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

Report Date: 08-May-17

W-846 3005A, 6020A, METALS BY ICPMS (TOTAL)											
Batch 129738 Samp	Type: MBLK	Units µg/L									
SampID: MBLK-129738									Date		
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Antimony	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Arsenic	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Barium	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Beryllium	1.0		< 1.0	1.000	0	0	-100	100	05/03/2017		
Boron	25.0		< 25.0	25.00	0	0	-100	100	05/03/2017		
Cadmium	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Chromium	1.0		< 1.0	1.000	0	0	-100	100	05/03/2017		
Cobalt	1.0		< 1.0	1.000	0	0	-100	100	05/03/2017		
Lead	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Lithium	1.0		< 1.0	1.000	0	59.6	-100	100	05/03/2017		
Molybdenum	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Selenium	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		
Thallium	1.0		< 1.0	1.000	0	0	-100	100	05/02/2017		

Batch 129738 SampType: LCS

SampID: LCS-129738

								Date
Analyses	RL	Qual Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony	1.0	457	500.0	0	91.3	80	120	05/02/2017
Arsenic	1.0	478	500.0	0	95.5	80	120	05/02/2017
Barium	1.0	1890	2000	0	94.6	80	120	05/02/2017
Beryllium	1.0	51.3	50.00	0	102.5	80	120	05/03/2017
Boron	25.0	502	500.0	0	100.3	80	120	05/03/2017
Cadmium	1.0	45.6	50.00	0	91.1	80	120	05/02/2017
Chromium	1.0	183	200.0	0	91.7	80	120	05/03/2017
Cobalt	1.0	468	500.0	0	93.6	80	120	05/03/2017
Lead	1.0	476	500.0	0	95.1	80	120	05/02/2017
Lithium	1.0	550	500.0	0	110.0	80	120	05/03/2017
Molybdenum	1.0	449	500.0	0	89.9	80	120	05/02/2017
Selenium	1.0	462	500.0	0	92.4	80	120	05/02/2017
Thallium	1.0	229	250.0	0	91.7	80	120	05/02/2017

Units µg/L

Mercury

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224

Report Date: 08-May-17

SW-846 3005A, 6020A, METAL	S BY ICPMS (1	TOTAL)							
Batch 129738 SampType:	MS	Units µg/L							
SampID: 17040224-007BMS									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony	1.0		472	500.0	1.019	94.2	75	125	05/02/2017
Arsenic	1.0		501	500.0	26.45	94.8	75	125	05/02/2017
Barium	1.0		2020	2000	91.99	96.6	75	125	05/02/2017
Beryllium	1.0		49.7	50.00	0	99.4	75	125	05/03/2017
Boron	25.0	S	28200	500.0	26930	245.2	75	125	05/03/2017
Cadmium	1.0		46.7	50.00	0.6973	92.1	75	125	05/02/2017
Chromium	1.0		185	200.0	3.761	90.8	75	125	05/03/2017
Cobalt	1.0		458	500.0	1.193	91.5	75	125	05/03/2017
Lead	1.0		493	500.0	7.712	97.1	75	125	05/02/2017
Lithium	1.0		627	500.0	97.46	105.9	75	125	05/03/2017
Molybdenum	1.0		753	500.0	289.0	92.7	75	125	05/02/2017
Selenium	1.0		567	500.0	118.1	89.7	75	125	05/02/2017
Thallium	1.0		232	250.0	0	92.8	75	125	05/02/2017
Batch 129738 SampType: SampID: 17040224-007BMSD	MSD	Units µg/L					RPD	Limit 20	Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Antimony	1.0		465	500.0	1.019	92.8	472.2	1.54	05/02/2017
Arsenic	1.0		499	500.0	26.45	94.5	500.7	0.29	05/02/2017
Barium	1.0		1990	2000	91.99	94.9	2024	1.65	05/02/2017
Beryllium	1.0		48.9	50.00	0	97.7	49.72	1.73	05/03/2017
Boron	25.0	S	27900	500.0	26930	192.9	28160	0.93	05/03/2017
Cadmium	1.0		46.2	50.00	0.6973	91.0	46.75	1.17	05/02/2017
Chromium	1.0		186	200.0	3.761	91.2	185.3	0.48	05/03/2017
Cobalt	1.0		464	500.0	1.193	92.6	458.5	1.25	05/03/2017
Lead	1.0		487	500.0	7.712	95.9	493.5	1.26	05/02/2017
Lithium	1.0		617	500.0	97.46	103.8	627.1	1.68	05/03/2017
Molybdenum	1.0		745	500.0	289.0	91.1	752.7	1.08	05/02/2017
Selenium	1.0		567	500.0	118.1	89.7	566.7	0.03	05/02/2017
Thallium	1.0		231	250.0	0	92.3	232.0	0.55	05/02/2017
SW-846 7470A (TOTAL)									
Batch 129695 SampType: SampID: MBLK-129695	MBLK	Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed

Batch 129695	SampType:	LCS		Units µg/L							
SampID: LCS-12969	5										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury			0.20		5.14	5.000	0	102.8	85	115	05/01/2017

<0.20 0.2000

0

0

-100

100

0.20

05/01/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

http://www.teklabinc.com/

Work Order: 17040224

SW-846 7470A (TOTAL)										
Batch 129707 SampType:	MBLK		Units µg/L							
SampID: MBLK-129707										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.20		< 0.20	0.2000	0	0	-100	100	05/01/2017
Batch 129707 SampType:	LCS		Units µg/L							
SampID: LCS-129707										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.20		4.64	5.000	0	92.8	85	115	05/01/2017
Batch 129707 SampType:	MS		Units µg/L							
SampID: 17040224-009BMS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.20		4.66	5.000	0	93.2	75	125	05/01/2017
Batch 129707 SampType:	MSD		Units µg/L					RPD) Limit 15	
SampID: 17040224-009BMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Mercury		0.20		4.64	5.000	0	92.8	4.661	0.40	05/01/2017
Batch 129736 SampType:	MBLK		Units µg/L							
SampID: MBLK-129736										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.20		< 0.20	0.2000	0	0	-100	100	05/01/2017
Batch 129736 SampType:	LCS		Units µg/L							
SampID: LCS-129736										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.20		5.26	5.000	0	105.2	85	115	05/01/2017
Batch 129736 SampType:	MS		Units µg/L							
SampID: 17040224-007BMS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.20		5.05	5.000	0	101.0	75	125	05/01/2017
Batch 129736 SampType:	MSD		Units µg/L					RPD) Limit 15	
SampID: 17040224-007BMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Mercury		0.20		4.96	5.000	0	99.2	5.049	1.79	05/01/2017

Receiving Check List

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17040224 Report Date: 08-May-17

Carrier: Tim Mathis	Received By: AMD										
Completed by: On: 27-Apr-17 Offood Offood Amber M. Dilallo	27 [.]	eviewed by: On: -Apr-17	Elizabeth A. H. Elizabeth A. Hurley	nly							
Pages to follow: Chain of custody 1	Extra pages includ	ed 8									
Shipping container/cooler in good condition?	Yes 🗸	No	Not Present	Temp °C	4 62						
Type of thermal preservation?	None				4.02						
Chain of custody present?	Yes 🗹	No 🗌									
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌									
Chain of custody agrees with sample labels?	Yes	No 🗹									
Samples in proper container/bottle?	Yes 🖌	No 🗌									
Sample containers intact?	Yes 🖌	No 🗌									
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌									
All samples received within holding time?	Yes 🗸	No 🗌									
Reported field parameters measured:	Field 🗹	Lab 🗌	NA 🗌								
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌									
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam	nnt with a temperatu ne day as collected.	re between									
Water – at least one vial per sample has zero headspace?	Yes	No	No VOA vials 🔽	•							
Water - TOX containers have zero headspace?	Yes 🗌	No	No TOX containers	•							
Water - pH acceptable upon receipt?	Yes	No 🗹	NA 🗌								
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗖								
Any No responses must be detailed below or on the COC.											

Additional Nitric Acid was needed in L4, LPZ-3, and LPZ-17 upon arrival at the laboratory. AMD 4/27/17

No containers were labeled as LPZ-17. Per Tim Mathis, LPZ-17 was collected in containers labeled as LPZ-5 which was dry. EAH 5/1/17

•	TEKLAB, INC. 544	45 Horses	shoe Lak∈	s Roa	CHAII d - Coll	N CF insvill	e, IL 622	34 - Ph	:enor	(618)	344	-1004	- Fa	k: (61	 8) 3,	44-10	05		
Client:	Natural Resource	Technology, In-	IJ				Samples	on: N	UE UE	BLUE		NO	Щ	5 F	° L				
Address:	2422 East Washin	gton Street					Preserve	d in: 🗾	LAB.		~		<u>ତ</u>	S LAB	USE	ONL	~		-
Citv / State	/ Zip Bloomington, IL 6	1704					Lab Note	NH RS	3										
Contact:	Steve Wiskes		_ Phone:	(41	4) 837-3614	**		CU	e E E										
E-Mail:	steve.wiskes@obg.com		_ Fax:				Client Co	mment	5										
Are these sample:	known to be involved in liti	igation? If yes,	a surcharge w	ill apply	□ Yes	² X	Total Metal: 7470A.	s: ICP/MS	6020A {	bh As Ba	Be B (Ч С Р С	Pb Li M	Ao Se T	I, ICP 6	010 Ca	I Mg K I	Na, and	d Hg
Are these sample: Are there any requ	s known to be nazardous? iired reporting limits to be m	□ Yes 🖌	No ested analysis′	?. If yes,	please pro	vide	LPZ-17: Alt	ernate san	npling pc	vint if LP.	Z-5 is d	ž							
limits in the comm	ent section. 🛛 Yes 🔏	No					+ 121 ¥	NO A	T STOR	南			All of the						
Proj	ect Name/Number		Sample C	Collect	or's Nam	e	MAT	RIX			S	ICATE	ANA	YSIS	REQ	UEST	Ð		
Hennepin Pond 1	& 2 Additional Testing		True / un	i ke					Alka	Alk	Fie	Field	Field	Fie	Fie			Т	
	s Requested	Billing Inst	tructions	# and]	Type of Cor	Itainers	Lea		Ci alinit Ci	Chlor alini	ld C SM	Ele DO	d OF	<u>Id</u> bl	Id Te	Fluo	Sulf	DS S	Tota
Standard	1-2 Day (100% Surcharge)			HH U			acha		aCO3 y, Ca aCO3	ty, Hy	ondua 2510-	vatior SM 4	RP SM	<u>4 255</u> ∃ SM H+B	urbian <u>130-F</u> empei	ride 9	ate 90	SM 25	al Met
Lab Use Only	Sample Identification	Date/Tim	e Samnled	103 NP			te		b (as	251 d (as	tivity -B	<u>is</u> 500-	2580) 4500-	ature	214	36	40C	als
									;			.0)	-					
190 - hxxaholi	L4 .	4-25-17	1322	1 1			×		×	×	×	×	×	×	× ×	×	×	×	
200	LPZ-1	•	134	1			×		×	× ×	×	×	×	×	×	×	×	××	~
\$40.	LPZ-3		1810	-			×		×	× ×	×	×	×	×	×	×	×	××	
hoar	гр <u>г-</u> 5 Ж 🖈		133b	۲ ۲			×		×	× ×	×	×	×	×	××	×	×	××	~
500-	LPZ-13	(;	307 Strate	0			×					<u>^</u>							
206	LPZ-15		1310	0			×					^							
100-	LPZ-17 🗡	181	+ +310-	0			×		×	x x	×	^ x	×	×	×	¥	X	メ ン ン	
200%	L4 DUP		1322	-			×		×	× ×	×	×	×	×	×	×	×	××	
600-	Field Blank	~	1900	-			×		×	×		<u> </u>				×	×	×	
	Relinquished By			Date/	Lime			Ľ	teceive	d By						Date/T	ime		
The second se	X		4221	3 /64	0		Omp	Q J	Ľ.	SU			\vdash	(Ch	2	2	15J		
The individual sign	ving this agreement on beha	alf of the client.	acknowledges	s that he	/she has rea	ad and ur	iderstands the	terms and	d conditi	ons of th	. <u>e</u>			#leOrde	i	37016	킨	8	
agreement, and th	at he/she has the authority	to sign on beh	alf of the client	L. See W	wv.teklabin	c.com for	terms and co	nditions.	12122	200	2		5		÷	2220	13	Ľ	•

LILLAN

September 22, 2017

Steve Wiskes Natural Resource Technology, Inc. 2422 East Washington Street Suite 104 Bloomington, IL 61704 TEL: (414) 837-3614 FAX: (414) 837-3608

RE: Hennepin Pond 1 & 2 Additional Testing

WorkOrder: 17081821

Dear Steve Wiskes:

TEKLAB, INC received 9 samples on 9/8/2017 1:10:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Project Manager (618)344-1004 ex 16 MAustin@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17081821 Report Date: 22-Sep-17

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Sample Summary	15
Dates Report	16
Quality Control Results	19
Receiving Check List	25
Chain of Custody	Appended

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17081821

Report Date: 22-Sep-17

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing

Cooler Receipt Temp: 1.02 °C

An employee of Teklab, Inc. collected the sample(s).

LPZ-1, LPZ-3, and LPZ-5 will not be reported; wells were dry. TM/EAH 9/8/17

LPZ-17 to be used as alternate sampling point for LPZ-5. MLA 9/8/17

 Work Order:
 17081821

 Report Date:
 22-Sep-17

Locations Collinsville Springfield **Kansas City** 5445 Horseshoe Lake Road 3920 Pintail Dr 8421 Nieman Road Address Address Address Collinsville, IL 62234-7425 Springfield, IL 62711-9415 Lenexa, KS 66214 (618) 344-1004 Phone (217) 698-1004 (913) 541-1998 Phone Phone Fax (618) 344-1005 Fax (217) 698-1005 Fax (913) 541-1998 jhriley@teklabinc.com Email KKlostermann@teklabinc.com Email jhriley@teklabinc.com Email **Collinsville Air** Chicago Address 5445 Horseshoe Lake Road Address 1319 Butterfield Rd. Collinsville, IL 62234-7425 Downers Grove, IL 60515 (618) 344-1004 (630) 324-6855 Phone Phone Fax (618) 344-1005 Fax EHurley@teklabinc.com Email jhriley@teklabinc.com Email

Accreditations

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2018	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2018	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2018	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2018	Collinsville
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2018	Collinsville
Arkansas	ADEQ	88-0966		3/14/2018	Collinsville
Illinois	IDPH	17584		5/31/2019	Collinsville
Indiana	ISDH	C-IL-06		1/31/2018	Collinsville
Kentucky	KDEP	98006		12/31/2017	Collinsville
Kentucky	UST	0073		1/31/2018	Collinsville
Louisiana	LDPH	LA170027		12/31/2017	Collinsville
Missouri	MDNR	930		1/31/2018	Collinsville
Missouri	MDNR	00930		5/31/2017	Collinsville
Oklahoma	ODEQ	9978		8/31/2018	Collinsville
Tennessee	TDEC	04905		1/31/2018	Collinsville

Laboratory Results

http://www.teklabinc.com/

Work Order: 17081821

Client Project: Hennepin Por		Report Date: 22-Sep-17							
Lab ID: 17081821-00	1			Client Sample ID: L4					
Matrix: LEACHATE				Collection	Date: 09/	06/2017	15:15		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
FIELD ELEVATION MEASUR	EMENTS								
Depth to leachate from measuring	ıg	0		14.57	ft	1	09/06/2017 15:15	R237731	
		1.00		7 95		1	00/06/2017 15:15	D007701	
		1.00		7.05		1	09/00/2017 15.15	R237731	
STANDARD METHODS 2130	D FIELD	1.0		0 5	NTU	1	00/06/2017 15:15	D037731	
STANDARD METHODS 19TH		1.0		0.5	NIO	1	09/00/2017 15:15	R237731	
Ovidation Reduction Retential	ED. 2300 B FIELD	300		-95	m\/	1	00/06/2017 15:15	D037731	
STANDARD METHODS 2510		-300		-00	IIIV		09/00/2017 13:13	11257751	
STANDARD METHODS 2310		1		1120	uS/cm	1	00/06/2017 15:15	D037731	
		1		1130	μο/σπ	I	09/00/2017 15.15	R237731	
STANDARD METHODS 2550	BFIELD	0		44.70	°C	1	00/06/2017 15:15	D007701	
		U		14.72	U	1	09/00/2017 13:13	R237731	
Orvigon Dissolved		1.00		- 1.00	ma/l	1	00/06/2017 15:15	D037731	
) D	1.00		< 1.00	ilig/L	1	09/00/2017 15:15	R237731	
Alkalinity Total (as CaCO3)		0		220	ma/l	1	00/11/2017 15:05	D237563	
STANDARD METHODS 2220	D	0		220	ilig/L	I	09/11/2017 13:05	11257505	
Alkalinity Carbonate (as CaCO3		0		0	ma/l	1	00/11/2017 15:05	P237566	
		0		0	IIIg/L	1	09/11/2017 15:05	R237300	
Alkalinity Bicarbonate (as CaCC		0		220	ma/l	1	00/11/2017 15:05	P237565	
STANDARD METHODS 2540		0		220	iiig/L		00/11/2017 10:00	11207 303	
Total Dissolved Solids		20		972	ma/l	1	09/12/2017 16:16	R237592	
		20		512	iiig/E		00/12/2011 10:10	11207002	
Sulfate	NELAP	200		419	ma/l	20	09/12/2017 15:46	R237579	
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0 10		0.19	ma/l	1	09/08/2017 18:28	R237461	
SW-846 9251 (TOTAL)		00		0110		•			
Chloride	NELAP	5		21	ma/L	1	09/12/2017 15:08	R237578	
SW-846 30054 6010B META	ALS BY ICP (TOTAL)								
Calcium	NELAP	0.050		202	ma/L	1	09/11/2017 14:25	133977	
Magnesium	NELAP	0.050		35.1	mg/L	1	09/11/2017 14:25	133977	
Potassium	NELAP	0.200		12.7	mg/L	2	09/12/2017 14:25	133977	
Sodium	NELAP	0.050		35.1	mg/L	1	09/11/2017 14:25	133977	
SW-846 3005A, 6020A, META	ALS BY ICPMS (TOTA	L)							
Antimony	NELAP	1.0		5.1	µg/L	5	09/11/2017 15:16	133980	
Arsenic	NELAP	1.0		61.0	µg/L	5	09/11/2017 15:16	133980	
Barium	NELAP	1.0		51.8	µg/L	5	09/11/2017 15:16	133980	
Beryllium	NELAP	1.0		< 1.0	µg/L	5	09/11/2017 15:16	133980	
Boron	NELAP	25.0		32000	µg/L	5	09/11/2017 15:16	133980	
Cadmium	NELAP	1.0		< 1.0	µg/L	5	09/11/2017 15:16	133980	
Chromium	NELAP	1.0	J	0.3	µg/L	5	09/11/2017 15:16	133980	
Cobalt	NELAP	1.0	J	0.3	µg/L	5	09/11/2017 15:16	133980	
Lead	NELAP	1.0		< 1.0	µg/L	5	09/12/2017 14:29	133980	
Lithium		1.0		62.7	µg/L	5	09/11/2017 15:16	133980	
		1.0		(1.3	µg/L	5	09/11/2017 15:16	133980	
Geletiiuiii	NELAF	1.0		< 1.0	µy/L	5		100800	

Laboratory Results

Client:	Client: Natural Resource Technology, Inc.				Work Order: 17081821				21
Client Project: Hennepin Pond 1 & 2 Additional Testin Lab ID: 17081821-001				g Report Date: 22-Sep			-17		
				Client Sample ID: L4					
Matrix:	LEACHATE				Collection	Date: 09/(06/2017	15:15	
An	alyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 3005A	, 6020A, METALS	S BY ICPMS (TOTAL)							
Thallium		NELAP	1.0		< 1.0	µg/L	5	09/11/2017 15:16	133980
SW-846 7470A (TOTAL)									
Mercury		NELAP	0.20		< 0.20	µg/L	1	09/11/2017 9:32	133984

Laboratory Results

Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing				Work Order: 17081821				
					Report Date: 22-Sep-17			
Lab ID: 17081821-00			Client Sample ID: LPZ-13					
Matrix: LEACHATE				Collection Date: 09/07/2017 15:00				
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch	
FIELD ELEVATION MEASUREMENTS								
Depth to leachate from measuring point		0		12.85	ft	1	09/07/2017 15:00 R237731	

Client: Natural	Resource Technology, Inc.			Work Order: 17081821						
Client Project: Hennepi	n Pond 1 & 2 Additional Tes	d 1 & 2 Additional Testing				Report Date: 22-Sep-17				
Lab ID: 17081821-006			Client Sample ID: LPZ-15							
Matrix: LEACHATE				Collection Date: 09/07/2017 15:45						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch			
FIELD ELEVATION MEASUREMENTS										
Depth to leachate from me point	easuring	0		15.05	ft	1	09/07/2017 15:45 R237731			

Client: Natural Resou				W	ork Order: 170818	321			
Client Project: Hennepin Pon	d 1 & 2 Additional	Testing		Report Date: 22-Sep-17					
Lab ID: 17081821-007	,	-		Client Sam	ple ID: LPZ	2-17			
Matrix: FACHATE				Collection	Date: 09/	06/2017	15.01		
Analyzag	Contification	DI	Qual	Degult	Unita	DE	Dote Analyzed	Datah	
		KL	Quai	Result	Units	DF	Date Analyzeu	Datch	
Depth to leachate from measuring		0		15 92	ft	1	09/06/2017 15:01	R237731	
point	,			10.02	it it	•	00/00/2011 10:01	11201101	
STANDARD METHOD 4500-H	B FIELD								
рН		1.00		10.46		1	09/06/2017 15:01	R237731	
STANDARD METHODS 2130	B FIELD								
Turbidity		1.0		9.8	NTU	1	09/06/2017 15:01	R237731	
STANDARD METHODS 18TH	ED. 2580 B FIELD								
Oxidation-Reduction Potential		-300		-230	mV	1	09/06/2017 15:01	R237731	
STANDARD METHODS 2510 B	3 FIELD								
Conductivity		1		1820	µS/cm	1	09/06/2017 15:01	R237731	
STANDARD METHODS 2550 B	3 FIELD								
Temperature		0		16.84	°C	1	09/06/2017 15:01	R237731	
STANDARD METHODS 4500-0	J G FIELD								
Oxygen, Dissolved		1.00		< 1.00	mg/L	1	09/06/2017 15:01	R237731	
STANDARD METHODS 2320	В								
Alkalinity, Total (as CaCO3)	NELAP	0		162	mg/L	1	09/11/2017 15:20	R237563	
STANDARD METHODS 2320 E	3								
Alkalinity, Carbonate (as CaCO3)	NELAP	0		68	mg/L	1	09/11/2017 15:20	R237566	
STANDARD METHODS 2320 E	3 (TOTAL)								
Alkalinity, Bicarbonate (as CaCO3	3) NELAP	0		0	mg/L	1	09/11/2017 15:20	R237565	
STANDARD METHODS 2540 (C (TOTAL)								
Total Dissolved Solids	NELAP	20		1910	mg/L	1	09/12/2017 16:16	R237592	
SW-846 9036 (TOTAL)									
Sulfate	NELAP	500		1120	mg/L	50	09/12/2017 16:03	R237579	
SW-846 9214 (TOTAL)					-				
Fluoride	NELAP	0.10	J	0.05	mg/L	1	09/08/2017 18:30	R237461	
SW-846 9251 (TOTAL)									
Chloride	NELAP	5		16	mg/L	1	09/12/2017 15:54	R237578	
SW-846 3005A, 6010B, METAI	S BY ICP (TOTAL)				Ū				
Calcium	NELAP	0.050	S	538	mg/L	1	09/11/2017 14:31	133977	
Magnesium	NELAP	0.050		2.63	mg/L	1	09/11/2017 14:31	133977	
Potassium	NELAP	0.500		25.5	mg/L	5	09/12/2017 14:35	133977	
Sodium	NELAP	0.050		21.6	mg/L	1	09/11/2017 14:31	133977	
MS QC limits for Ca are not applica	able due to high sample,	/spike ratio.			•				
SW-846 3005A, 6020A, METAI	LS BY ICPMS (TOT/	AL)							
Antimony	NELAP	1.0		1.3	µg/L	5	09/11/2017 15:24	133980	
Arsenic	NELAP	1.0		38.1	µg/L	5	09/11/2017 15:24	133980	
Barium	NELAP	1.0		97.2	µg/L	5	09/11/2017 15:24	133980	
Beryllium	NELAP	1.0	J	0.8	µg/L	5	09/11/2017 15:24	133980	
Boron	NELAP	25.0	S	28600	µg/L	5	09/11/2017 15:24	133980	
Cadmium	NELAP	1.0		1.3	µg/L	5	09/11/2017 15:24	133980	
Chromium	NELAP	1.0		8.3	µg/L	5	09/11/2017 15:24	133980	
Cobalt	NELAP	1.0		2.3	µg/L	5	09/11/2017 15:24	133980	
Lead	NELAP	1.0		15.3	µg/L	5	09/12/2017 14:37	133980	
Lithium		1.0		90.3	µg/L	5	09/11/2017 15:24	133980	
Molybdenum	NELAP	1.0		299	µg/L	5	09/11/2017 15:24	133980	

Work Order:	17081821

Client:	Natural Resource Technology, Inc.	

Client Project: Hennepin Pond 1 & 2 Additional Testing

Lab ID: 17081821-007

Client Sample ID:	LPZ-17		
Collection Date:	09/06/2017	15:01	

Matrix:	atrix: LEACHATE					Collection Date: 09/06/2017 15:01				
Ana	lyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL)										
Selenium		NELAP	1.0		7.0	µg/L	5	09/11/2017 15:24	133980	
Thallium		NELAP	1.0	J	0.5	µg/L	5	09/11/2017 15:24	133980	
MS QC limits for B are not applicable due to high sample/spike ratio.										
SW-846 7470A (TOTAL)										
Mercury		NELAP	0.20		< 0.20	µg/L	1	09/11/2017 9:46	133984	

point

pН

Turbidity

Sulfate

Fluoride

Chloride

Calcium

Sodium

Arsenic

Barium

Boron

Cobalt

Lithium

Molybdenum

Selenium

Lead

Beryllium

Cadmium

Chromium

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

1.0

25.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

J

J

http://www.teklabinc.com/

Work Order: 17081821 Client: Natural Resource Technology, Inc. Client Project: Hennepin Pond 1 & 2 Additional Testing Report Date: 22-Sep-17 Lab ID: 17081821-008 Client Sample ID: L4 DUP Matrix: LEACHATE Collection Date: 09/06/2017 15:15 Analyses Certification RL Qual Result Units DF **Date Analyzed Batch** FIELD ELEVATION MEASUREMENTS 0 ft 09/06/2017 15:15 R237731 Depth to leachate from measuring 14.57 1 **STANDARD METHOD 4500-H B FIELD** 1.00 7.85 1 09/06/2017 15:15 R237731 **STANDARD METHODS 2130 B FIELD** 1.0 8.5 NTU 1 09/06/2017 15:15 R237731 STANDARD METHODS 18TH ED. 2580 B FIELD **Oxidation-Reduction Potential** -300 -85 mV 1 09/06/2017 15:15 R237731 **STANDARD METHODS 2510 B FIELD** Conductivity 1 1130 µS/cm 1 09/06/2017 15:15 R237731 **STANDARD METHODS 2550 B FIELD** °C Temperature 0 14.72 1 09/06/2017 15:15 R237731 **STANDARD METHODS 4500-O G FIELD** 1.00 Oxygen, Dissolved < 1.00 mg/L 1 09/06/2017 15:15 R237731 **STANDARD METHODS 2320 B** NELAP 0 Alkalinity, Total (as CaCO3) 226 mg/L 1 09/11/2017 15:28 R237563 **STANDARD METHODS 2320 B** NELAP 0 09/11/2017 15:28 R237566 Alkalinity, Carbonate (as CaCO3) 0 mg/L 1 **STANDARD METHODS 2320 B (TOTAL)** Alkalinity, Bicarbonate (as CaCO3) NELAP 0 226 mg/L 1 09/11/2017 15:28 R237565 STANDARD METHODS 2540 C (TOTAL) NELAP 20 954 **Total Dissolved Solids** mg/L 1 09/12/2017 16:46 R237592 SW-846 9036 (TOTAL) NELAP 100 439 mg/L 10 09/12/2017 16:11 R237579 SW-846 9214 (TOTAL) 0.10 mg/L NELAP 0.19 1 09/08/2017 18:34 R237461 SW-846 9251 (TOTAL) NELAP 5 22 mg/L 1 09/12/2017 16:02 R237578 SW-846 3005A, 6010B, METALS BY ICP (TOTAL) NELAP 0.050 210 mg/L 1 09/11/2017 14:48 133977 0.050 133977 Magnesium NELAP 35.2 mg/L 1 09/11/2017 14:48 Potassium NELAP 0.200 12.5 mg/L 2 09/12/2017 14:53 133977 NELAP 0.050 35.3 mg/L 09/11/2017 14:48 133977 1 SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL) NELAP 1.0 5 09/11/2017 15:33 133980 Antimony 4.5 µg/L NELAP 1.0 66.4 µg/L 5 09/11/2017 15:33 133980 1.0 5

59.1

< 1.0

33300

< 1.0

0.3

0.3

< 1.0

63.8

74.4

< 1.0

µg/L

5

5

5

5

5

5

5

5

5

Page 12 of 25

09/11/2017 15:33 133980

09/11/2017 15:33 133980

09/11/2017 15:33 133980

09/11/2017 15:33 133980

09/12/2017 14:45 133980

09/11/2017 15:33 133980

133980

133980

133980

133980

09/11/2017 15:33

09/11/2017 15:33

09/11/2017 15:33

09/11/2017 15:33

Client: Natural Res	t: Natural Resource Technology, Inc.				Work Order: 17081821				
Client Project: Hennepin P	ond 1 & 2 Additional Te	tional Testing			Report Date: 22-Sep-17				
Lab ID: 17081821-(Client Sample ID: L4 DUP						
Matrix: LEACHATE				Collection Date: 09/06/2017 15:15					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 3005A, 6020A, ME	TALS BY ICPMS (TOTAL)							
Thallium	NELAP	1.0		< 1.0	µg/L	5	09/11/2017 15:33	133980	
SW-846 7470A (TOTAL)									
Mercury	NELAP	0.20		< 0.20	µg/L	1	09/11/2017 9:49	133984	

Date Analyzed Batch

09/11/2017 15:33 R237563

09/11/2017 15:33 R237566

09/11/2017 15:33 R237565

09/12/2017 16:46 R237592

09/12/2017 16:13 R237579

09/08/2017 18:35 R237461

09/12/2017 16:10 R237578

09/11/2017 14:54 133977

Work Order: 17081821

Client: Natural Resour	rce Technology, In		Work						
Client Project: Hennepin Ponc	1 1 & 2 Additional	Testing		Report Da					
Lab ID: 17081821-009				Client Samp	ole ID: Fiel	d Blank			
Matrix: LEACHATE			Collection	Date: 09/	06/2017	15:25			
Analyses	Certification	RL	Qual	Result	Units	DF	Date		
STANDARD METHODS 2320 F	3								
Alkalinity, Total (as CaCO3)	NELAP	0		2	mg/L	1	09/1		
STANDARD METHODS 2320 B	}								
Alkalinity, Carbonate (as CaCO3)	NELAP	0		0	mg/L	1	09/1		
STANDARD METHODS 2320 B	(TOTAL)								
Alkalinity, Bicarbonate (as CaCO3) NELAP	0		2	mg/L	1	09/1		
STANDARD METHODS 2540 C	(TOTAL)								
Total Dissolved Solids	NELAP	20	J	10	mg/L	1	09/12		
SW-846 9036 (TOTAL)									
Sulfate	NELAP	10		< 10	mg/L	1	09/12		
SW-846 9214 (TOTAL)									
Fluoride	NELAP	0.10		< 0.10	mg/L	1	09/08		
SW-846 9251 (TOTAL)									
Chloride	NELAP	5		< 5	mg/L	1	09/12		
SW-846 3005A, 6010B, METAL	S BY ICP (TOTAL)								
Calcium	NELAP	0.050		< 0.050	mg/L	1	09/1		
Magnaaium		0.050		< 0.050	ma/l	1	00/1		

Magnesium	NELAP	0.050	< 0.050	mg/L	1	09/11/2017 14:54	133977	
Potassium	NELAP	0.100	< 0.100	mg/L	1	09/12/2017 15:02	133977	
Sodium	NELAP	0.050	< 0.050	mg/L	1	09/11/2017 14:54	133977	
SW-846 3005A, 6020A, ME	TALS BY ICPMS (TOTA	AL)						
Antimony	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Arsenic	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Barium	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Beryllium	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Boron	NELAP	25.0 J	21	µg/L	5	09/12/2017 14:21	133980	
Cadmium	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Chromium	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Cobalt	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Lead	NELAP	1.0	< 1.0	µg/L	5	09/12/2017 14:21	133980	
Lithium		1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Molybdenum	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Selenium	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
Thallium	NELAP	1.0	< 1.0	µg/L	5	09/11/2017 15:41	133980	
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.20	< 0.20	µg/L	1	09/11/2017 9:52	133984	

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

 Work Order:
 17081821

 Report Date:
 22-Sep-17

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
17081821-001	L4	Leachate	2	09/06/2017 15:15
17081821-002	LPZ-1	Leachate	1	09/06/2017 13:48
17081821-003	LPZ-3	Leachate	1	09/06/2017 13:40
17081821-004	LPZ-5	Leachate	1	09/06/2017 13:36
17081821-005	LPZ-13	Leachate	1	09/07/2017 15:00
17081821-006	LPZ-15	Leachate	1	09/07/2017 15:45
17081821-007	LPZ-17	Leachate	2	09/06/2017 15:01
17081821-008	L4 DUP	Leachate	2	09/06/2017 15:15
17081821-009	Field Blank	Leachate	2	09/06/2017 15:25

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
17081821-001A	L4	09/06/2017 15:15	09/08/2017 13:10		
	Field Elevation Measurements				09/06/2017 15:15
	Standard Method 4500-H B Field				09/06/2017 15:15
	Standard Methods 2130 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:05
	Standard Methods 18th Ed. 2580 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:05
	Standard Methods 2320 B (Total)				09/11/2017 15:05
	Standard Methods 2510 B Field				09/06/2017 15:15
	Standard Methods 2540 C (Total)				09/12/2017 16:16
	Standard Methods 2550 B Field				09/06/2017 15:15
	Standard Methods 4500-O G Field				09/06/2017 15:15
	SW-846 9036 (Total)				09/12/2017 15:46
	SW-846 9214 (Total)				09/08/2017 18:28
	SW-846 9251 (Total)				09/12/2017 15:08
17081821-001B	L4	09/06/2017 15:15	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:25
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 14:25
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:16
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:29
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:32
17081821-005A	LPZ-13	09/07/2017 15:00	09/08/2017 13:10		
	Field Elevation Measurements				09/07/2017 15:00
17081821-006A	LPZ-15	09/07/2017 15:45	09/08/2017 13:10		
	Field Elevation Measurements				09/07/2017 15:45
17081821-007A	LPZ-17	09/06/2017 15:01	09/08/2017 13:10		
	Field Elevation Measurements				09/06/2017 15:01
	Standard Method 4500-H B Field				09/06/2017 15:01
	Standard Methods 2130 B Field				09/06/2017 15:01
	Standard Methods 2320 B				09/11/2017 15:20
	Standard Methods 18th Ed. 2580 B Field				09/06/2017 15:01
	Standard Methods 2320 B				09/11/2017 15:20
	Standard Methods 2320 B (Total)				09/11/2017 15:20
	Standard Methods 2510 B Field				09/06/2017 15:01
	Standard Methods 2540 C (Total)				09/12/2017 16:16
	Standard Methods 2550 B Field				09/06/2017 15:01
	Standard Methods 4500-O G Field				09/06/2017 15:01

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9036 (Total)				09/12/2017 16:03
	SW-846 9214 (Total)				09/08/2017 18:30
	SW-846 9251 (Total)				09/12/2017 15:54
17081821-007B	LPZ-17	09/06/2017 15:01	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:31
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 14:35
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:24
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:37
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:46
17081821-008A	L4 DUP	09/06/2017 15:15	09/08/2017 13:10		
	Field Elevation Measurements				09/06/2017 15:15
	Standard Method 4500-H B Field				09/06/2017 15:15
	Standard Methods 2130 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:28
	Standard Methods 18th Ed. 2580 B Field				09/06/2017 15:15
	Standard Methods 2320 B				09/11/2017 15:28
	Standard Methods 2320 B (Total)				09/11/2017 15:28
	Standard Methods 2510 B Field				09/06/2017 15:15
	Standard Methods 2540 C (Total)				09/12/2017 16:46
	Standard Methods 2550 B Field				09/06/2017 15:15
	Standard Methods 4500-O G Field				09/06/2017 15:15
	SW-846 9036 (Total)				09/12/2017 16:11
	SW-846 9214 (Total)				09/08/2017 18:34
	SW-846 9251 (Total)				09/12/2017 16:02
17081821-008B	L4 DUP	09/06/2017 15:15	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:48
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 14:53
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:33
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:45
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:49
17081821-009A	Field Blank	09/06/2017 15:25	09/08/2017 13:10		
	Standard Methods 2320 B				09/11/2017 15:33
	Standard Methods 2320 B				09/11/2017 15:33
	Standard Methods 2320 B (Total)				09/11/2017 15:33
	Standard Methods 2540 C (Total)				09/12/2017 16:46
	SW-846 9036 (Total)				09/12/2017 16:13
	SW-846 9214 (Total)				09/08/2017 18:35

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
	SW-846 9251 (Total)				09/12/2017 16:10
17081821-009B	Field Blank	09/06/2017 15:25	09/08/2017 13:10		
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/11/2017 14:54
	SW-846 3005A, 6010B, Metals by ICP (Total)			09/08/2017 14:09	09/12/2017 15:02
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/11/2017 15:41
	SW-846 3005A, 6020A, Metals by ICPMS (Total)			09/08/2017 14:31	09/12/2017 14:21
	SW-846 7470A (Total)			09/08/2017 14:51	09/11/2017 9:52

Client Project: Hennepin Pond 1 & 2 Additional Testing

Quality Control Results

http://www.teklabinc.com/

Work Order: 17081821

STANDARD METH	OD 4500-H	B FIELC	כ									
Batch R237731	SampType:	LCS			Units							
SampID: LCS-R2377	731											Date
Analyses			RL		Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
рН			1.0	0		7.00	7.000	0	100.0	99.1	100.9	09/06/2017
STANDARD METH	ODS 2510 E	B FIELD										
Batch R237731	SampType:	LCS			Units µmhos/c	m						
SampID: LCS-R2377	731											Date
Analyses			RL		Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Conductivity				1		1410	1412	0	99.9	90	110	09/06/2017
STANDARD METH	ODS 2320 I	В										
Batch R237563	SampType:	MBLK			Units mg/L							
SampID: MBLK												Date
Analyses			RL		Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Alkalinity, Total (as	CaCO3)			0		0						09/11/2017
Batch R237563	SampType:	LCS			Units mg/L							
SampID: LCS												Date
Analyses			RL		Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Alkalinity, Total (as	CaCO3)			0		230	232.0	0	99.1	90	110	09/11/2017
Ratch R237563	SampType:	MS			Units ma/L							
SampID: 17081821-0	001AMS				5							Date
Analyses			RI.		Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Alkalinity, Total (as	CaCO3)		RE	0	Quui	310	93.00	220.0	96.8	85	115	09/11/2017
	,											
Batch R237563	SampType:	MSD			Units mg/L					RPD) Limit 10	
SampID: 17081821-0	001AMSD											Date
Analyses			RL		Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Alkalinity, Total (as	CaCO3)			0	-	308	93.00	220.0	94.6	310.0	0.65	09/11/2017
STANDARD METH	ODS 2540 C	CTOTA	L)									
Batch R237592	SampType:	MBLK			Units mg/L							
SampID: MBLK												Date
Analyses			RL		Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Sol	lids		2	20		< 20						09/12/2017
Total Dissolved Sol	lids		2	0		< 20						09/12/2017
Total Dissolved Sol	lids		2	20	J	12						09/12/2017
Batch R237592	SampType:	LCS			Units mg/L							
SampID: LCS					Ū							Date
Analyses			RL		Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Dissolved Sol	lids		2	20	-	990	1000	0	99.0	90	110	09/12/2017

http://www.teklabinc.com/

Work Order: 17081821

Client Project: Hennepin	2 Addit	ional Testing					Report Date: 22-Sep-17			
STANDARD METHODS 25	40 C (TOTA	AL)								
Batch R237592 SampTy SampID: LCSQC	/pe: LCSQ	с,	Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	
Total Dissolved Solids		20 20		932 984	1000	0	93.2 98.4	90 90	110	09/12/2017 09/12/2017
Batch R237592 SampTy SampID: 17081821-001ADU	/pe: DUP		Units mg/L					RPD	RPD Limit 5	
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Total Dissolved Solids		20		984				972.0	1.23	09/12/2017
SW-846 9036 (TOTAL)										
Batch R237579 SampTy SampID: ICB/MBLK	/pe: MBLK	DI	Units mg/L	D 1	a 1		% D E C	L ou Limit	Lline Linoit	Date Analyzed
Sulfate		<u>RL</u> 10	Qual	<pre> Result </pre> <pre> <!--</td--><td>Spike</td><td>SPK Kei vai</td><td>%REC</td><td>LOW LIMIT</td><td>High Limit</td><td>09/12/2017</td></pre>	Spike	SPK Kei vai	%REC	LOW LIMIT	High Limit	09/12/2017
Batch R237579 SampTy SampID: ICV/LCS	/pe: LCS		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		10		20	20.00	0	98.9	90	110	09/12/2017
Batch R237579 SampTy SampID: 17081821-001AMS	/pe: MS		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		200		597	200.0	418.6	89.2	85	115	09/12/2017
Batch R237579 SampTy SampID: 17081821-001AMS	/pe: MSD		Units mg/L					RPD) Limit 10	Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Sulfate		200		611	200.0	418.6	96.4	597.0	2.37	09/12/2017
SW-846 9214 (TOTAL)										
Batch R237461 SampTy SampID: MBLK	/pe: MBLK		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		< 0.10						09/08/2017
Batch R237461 SampTy SampID: LCS	/pe: LCS		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride		0.10		1.06	1.000	0	105.5	90	110	09/08/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

http://www.teklabinc.com/

Work Order: 17081821

SW-846 9214 (TOTAL)									
Batch R237461 SampType SampID: 17081821-007AMS	: MS	Units mg/L							Date
Analyses	RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Fluoride	0.1	0	2.16 2	2.000	0.05000	105.6	85	115	09/08/2017
Batch R237461 SampType SampID: 17081821-007AMSD	: MSD	Units mg/L					RPD) Limit 10	Date
Analyses	RL	Oual	Result S	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Fluoride	0.1	0	2.21 2	2.000	0.05000	107.8	2.162	2.01	09/08/2017
SW-846 9251 (TOTAL)									
Batch R237578 SampType SampID: ICB/MBLK	: MBLK	Units mg/L							Date
Analyses	RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		5	< 5						09/12/2017
Batch R237578 SampType SampID: ICV/LCS	: LCS	Units mg/L							Date
Analyses	RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		5	21 2	20.00	0	105.3	90	110	09/12/2017
Batch R237578 SampType SampID: 17081821-001AMS	: MS	Units mg/L							Date
Analyses	RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloride		5	38 2	20.00	20.81	86.4	85	115	09/12/2017
Batch R237578 SampType	: MSD	Units mg/L					RPD) Limit 15	_
	DI	0.1	D. 10	.	SPK Pof Val	% PEC			Date Analvzed
Chloride	KL	Quai 5	38 2	20.00	20.81	86.4	38.08	0.05	09/12/2017
		0741							
SW-846 3005A, 6010B, META		UIAL)							
SampID: MBLK-133977	. WIDLK	onits ing/L							Date
Analyses	RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium	0.050	0	< 0.0500 0.	05000	0	0	-100	100	09/11/2017
Calcium	0.050	0	< 0.0500 0.	05000	0	0	-100	100	09/11/2017
Magnesium	0.050	0	< 0.0500 0.	05000	0	0	-100	100	09/11/2017
Magnesium	0.050	0	< 0.0500 0.	05000	0	0	-100	100	09/11/2017
Potassium	0.10	0	< 0.100 0	.1000	0	0	-100	100	09/12/2017
Sodium	0.050	0	< 0.0500 0.	05000	0	0	-100	100	09/11/2017
Sodium	0.050	0	< 0.0500 0.4	05000	0	0	-100	100	09/11/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17081821

SW-846 3005A, 6010B, METALS BY ICP (TOTAL)											
Batch 133977	SampType:	LCS		Units mg/L							
SampID: LCS-13397	77										Date
Analyses		R	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		0.	.0500		2.68	2.500	0	107.4	85	115	09/11/2017
Calcium		0.	.0500		2.61	2.500	0	104.3	85	115	09/11/2017
Magnesium		0.	.0500		2.63	2.500	0	105.0	85	115	09/11/2017
Magnesium		0.	.0500		2.68	2.500	0	107.3	85	115	09/11/2017
Potassium		(0.100		2.38	2.500	0	95.4	85	115	09/12/2017
Sodium		0.	.0500		2.39	2.500	0	95.6	85	115	09/11/2017
Sodium		0.	.0500		2.47	2.500	0	98.7	85	115	09/11/2017
Batch 133977	SampType:	MS		Units mg/L							
SampID: 17081821-	007BMS										Date
Analyses		R	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Calcium		(0.050	S	536	2.500	538.2	-100.0	75	125	09/11/2017
Magnesium		(0.050		5.24	2.500	2.627	104.3	75	125	09/11/2017
Potassium		(0.500		27.9	2.500	25.48	95.8	75	125	09/12/2017
Sodium		(0.050		23.7	2.500	21.56	85.2	75	125	09/11/2017
Dotab 133977	SamnTyne [.]	MSD		Units ma/I					RPD	l imit 20	
SamplD: 17081821-		mob		onno mg/L							Dete
- 1	oor Billob	P		0 1	D 1	a ''					Analyzed
Analyses		R		Qual	Result	Spike	SPK Rei vai	%REC			00/11/00/17
Calcium		(0.050	8	525	2.500	538.2	-532.0	535.7	2.04	09/11/2017
Magnesium		(0.050		5.22	2.500	2.627	103.9	5.235	0.19	09/11/2017
Potassium		(0.500		27.7	2.500	25.48	89.8	27.88	0.54	09/13/2017
Sodium		(0.050		23.8	2.500	21.56	90.4	23.69	0.55	09/11/2017
SW-846 3005A, 60	20A, METAL	S BY ICP	PMS (T	OTAL)							
Batch 133980	SampType:	MBLK		Units µg/L							
SampID: MBLK-133	980										Date
Analyses		R	et.	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony			1.0	¥ 0002	< 1.0	1.000	0	0	-100	100	09/11/2017
Arsenic			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Barium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
BervIlium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Boron			25.0		< 25.0	25.00	0	0	-100	100	09/11/2017
Cadmium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Chromium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Cobalt			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Lead			1.0		< 1.0	1.000	0	0	-100	100	09/12/2017
Lithium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Molybdenum			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Selenium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017
Thallium			1.0		< 1.0	1.000	0	0	-100	100	09/11/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17081821

Report Date: 22-Sep-17

SW-846 3005A, 6020A, METALS BY ICPMS (TOTAL)									
Batch 133980 SampType:	LCS	Units µg/L							
SampID: LCS-133980									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony	1.0		487	500.0	0	97.4	80	120	09/11/2017
Arsenic	1.0		522	500.0	0	104.3	80	120	09/11/2017
Barium	1.0		2020	2000	0	101.0	80	120	09/11/2017
Beryllium	1.0		52.8	50.00	0	105.7	80	120	09/11/2017
Boron	25.0		569	500.0	0	113.8	80	120	09/11/2017
Cadmium	1.0		48.8	50.00	0	97.7	80	120	09/11/2017
Chromium	1.0		203	200.0	0	101.6	80	120	09/11/2017
Cobalt	1.0		513	500.0	0	102.7	80	120	09/11/2017
Lead	1.0		514	500.0	0	102.9	80	120	09/11/2017
Lithium	1.0		514	500.0	0	102.7	80	120	09/11/2017
Molybdenum	1.0		491	500.0	0	98.2	80	120	09/11/2017
Selenium	1.0		518	500.0	0	103.6	80	120	09/11/2017
Thallium	1.0		238	250.0	0	95.1	80	120	09/11/2017

Batch 133980 SampType: MS Units µg/L

SampID: 17081821-007BMS

									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Antimony	1.0		485	500.0	1.257	96.8	75	125	09/11/2017
Arsenic	1.0		556	500.0	38.14	103.5	75	125	09/11/2017
Barium	1.0		2080	2000	97.21	99.0	75	125	09/11/2017
Beryllium	1.0		52.5	50.00	0.8463	103.3	75	125	09/11/2017
Boron	25.0	S	29800	500.0	28580	241.2	75	125	09/11/2017
Cadmium	1.0		49.2	50.00	1.346	95.7	75	125	09/11/2017
Chromium	1.0		204	200.0	8.319	97.8	75	125	09/11/2017
Cobalt	1.0		494	500.0	2.264	98.4	75	125	09/11/2017
Lead	1.0		520	500.0	15.27	101.0	75	125	09/12/2017
Lithium	1.0		595	500.0	90.27	101.0	75	125	09/11/2017
Molybdenum	1.0		794	500.0	299.0	99.1	75	125	09/11/2017
Selenium	1.0		494	500.0	7.005	97.4	75	125	09/11/2017
Thallium	1.0		241	250.0	0.5254	96.2	75	125	09/11/2017

Client Project: Hennepin Pond 1 & 2 Additional Testing

Work Order: 17081821

SW-846 3005A, 6020A, METAL	LS BY ICPMS (TOTAL)							
Batch 133980 SampType: SampID: 17081821 007BMSD	MSD	Units µg/L					RPD	Limit 20	5.
	DI	Qual	Docult	Spiles	SPK Ref Val	%REC		/al_%RPD	Date Analyzed
Antimony		Quai	192	500 0	1 257	96.2	185.5		
Arsenic	1.0		40Z	500.0	38.14	90.2 101 1	405.5 555 Q	2.22	09/11/2017
Barium	1.0		2060	2000	07.21		2077	0.04	09/11/2017
Bondlium	1.0		2000	50.00	0.8462	101 /	52.50	1.94	09/11/2017
Beron	25.0	6	28300	50.00	29590	54.9	32.30	5.00	09/11/2017
Codmium	25.0	5	20300	500.0	1 346	-54.0	29790	0.09	09/11/2017
Chromium	1.0		40.0	200.00	9.210	94.9	49.20	1 16	09/11/2017
Cobalt	1.0		202	200.0	2 264	90.7	204.0	1.10	09/11/2017
Lood	1.0		407 504	500.0	2.204	97.0 101.1	494.1	0.06	09/11/2017
Leau	1.0		521	500.0	15.27	101.1	520.4	0.00	09/12/2017
Molybdonum	1.0		504 777	500.0	90.27 200.0	90.7 05 5	595.1 704.2	1.93	09/11/2017
Selenium	1.0		111	500.0	299.0	95.5	194.3	2.24	09/11/2017
Thellium	1.0		400	250.0	7.005	95.7	494.2	0.12	09/11/2017
manium	1.0		241	250.0	0.5254	90.1	241.0	0.12	09/11/2017
SW-846 7470A (TOTAL)									
Batch 133984 SampType: SampID: MBLK-133984	MBLK	Units µg/L							Date
Analyses	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury	0.20		< 0.20	0.2000	0	0	-100	100	09/11/2017
Batch 133984 SampType: SampID: LCS-133984	LCS	Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury	0.20		5.32	5.000	0	106.3	85	115	09/11/2017
Batch 133984 SampType: SampID: 17081821-001BMS	MS	Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury	0.20	-	4.43	5.000	0	88.7	75	125	09/11/2017
Batch 133984 SampType:	MSD	Units µg/L					RPD	Limit 15	
SampID: 17081821-001BMSD									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Mercury	0.20	¥	4.36	5.000	0	87.2	4.435	1.66	09/11/2017

Receiving Check List

http://www.teklabinc.com/

Client: Natural Resource Technology, Inc.

Client Project: Hennepin Pond 1 & 2 Additional Testing

Carrier: Tim Mathis	ŀ	Received By: AN	1D	
Completed by: On: 08-Sep-17 Official Amber M. Dilallo	۲.	Reviewed by: On: 08-Sep-17	Marvin L. S Marvin L. Darling	Danling I
Pages to follow: Chain of custody 1 Shipping container/cooler in good condition? Turns of thermal process string?	Extra pages incl Yes 🗹	uded 16 No	Not Present] Temp °C 1.02
Chain of custody present?	Yes V	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No		
Samples in proper container/bottle?	Yes 🔽	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌		
All samples received within holding time?	Yes 🖌	No 🗌		
Reported field parameters measured:	Field 🗹	Lab 🗌	NA 🗌]
Container/Temp Blank temperature in compliance?	Yes 🗸	No		
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam	ant with a tempera ne day as collecte	ature between d.		
Water – at least one vial per sample has zero headspace?	Yes 🗌	No	No VOA vials 🗸]
Water - TOX containers have zero headspace?	Yes 🗌	No 🗌	No TOX containers]
Water - pH acceptable upon receipt?	Yes 🗹	No	NA]
NPDES/CWA TCN interferences checked/treated in the field?	Yes 🗌	No 🗌	NA 🗹]
Any No responses	must be detailed	below or on th	e COC.	

HAIN OF CUSTODY pg. 1 of 1 Work order # 08/83/ - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005		Samples on: A ICE BLUE ICE NO ICE 1/02 °C	Preserved in ArtaB Arterd	Lah Notes: Con #Cakin	337-3614 * 1912Y 4/18/17		Total Metals ICDMS 60200 Sh Ac Bo Bo Bo Do	Ves X No 7470A.	sase provide LPZ-17: Depth to Leachate only, analyze as Alternate sampling point if LPZ-5 is dry.	S Name MATRIX INDICATE ANALVSIS PROTECTED		To TDS Su Field Field Field C Field D Field C Field D Field C Field C Ikalinit (Alkalinit (Alkalinit (Alkalinit) (Alkal	acha	etals 2540C 9036 9214 Mity SM B erature 50 1 4500- 4500- 4500- 1 4500- 1				X X X X X X X X X X X X X X X X X X X	×	×	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X			e Received By Date/Time	over all all all all all all all all all al	has read and understands the terms and conditions of this	has read and understands the terms and conditions of this BottleOrder: 38544
CH, 445 Horseshoe Lake Road - C	e Technology Inc		Ington Street	61704	Phone: (414) 837-	Fax:		litigation? If yes, a surcharge will apply	met on the requested analysis?. If yes, please X No	Sample)Collector's N		Billing Instructions # and Type of	HH U	Date/Time Sampled 60	9.1e.17 1515 11	1 1343 11	1340 1 1	11 1336	0 msi titib	0 SHSI EHC -5	iS0i 11	11 13151	1525 11	8	Date/Time	1311	alf of the client, acknowledges that he/she has	an of the district, adviroused that network that the sign on behalf of the client. See www.teklat
TEKLAB, INC. 54	Natural Resource		2422 East Wash	Ite / Zip Bloomington, IL	Steve Wiskes	steve.wiskes@obg.com	and on the state of the state o	riples known to be involved in I nples known to be hazardous?	required reporting limits to be omment section.	Project Name/Number	rd 1 & 2 Additional Testing	sults Requested	 1-2 Lay (100% Surcharge) 3 Day (50% Surcharge) 	nly Sample Identification	01 [4 1]	C LPZ-1 *	S LPZ-3 ¥	4 LPZ-5 ¥	LFZ-13	LP2-15					Relinguished By		signing this agreement on beh	id that he/she has the authority

-

BORING LOGS AND WELL CONSTRUCTION INFORMATION

Leachate Well Construction Details West Ash Ponds 1 and 3 Hennepin Power Station

Monitoring Well:	TOP to TOC (ft)	TOP to GS (ft)	Bottom of Well to TOC (ft)	ELEV _{GS}	ELEV _{BOT}	ELEV _{TOP}	ELEV _{TOC}
LPZ-1	0.05	3	14.4	454.9	443.5	457.9	457.9
LPZ-3	0.0625	4.25	14.35	460.2	450.0	464.5	464.4
LPZ-5	0.05	3	10.46	463.1	455.6	466.1	466.0
LPZ-13	0.05	2.8	14.25	455.3	443.8	458.1	458.1
LPZ-15	0.05	3	15.3	460.8	448.5	463.8	463.8
LPZ-17	0.05	3	21.1	460.9	442.8	463.9	463.9

Notes:

- **GS** Ground Surface
- BOT Bottom of Well
- TOC Top of Well Casing
- **TOP** Top of Protective Pipe
- **GW** Ground Water

	H A	Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026	BORING NUMBER B1/LPZ-1 PAGE 1 OF 1											
CLIE	NT _Dy	negy Inc Hennepin Station	PROJEC	CT NAM	E _(DId V	Vest As	h Pond S	System:	Data	Gap A	nalysis		
PRO.	JECT N	UMBER <u>164-478</u>	PROJEC		ΑΤΙΟ	DN _	Hennep	oin Statio	n, Henn	epin, I	llinois			
DATE	E STAR	TED3/15/17 COMPLETED3/15/17	GROUN	D ELEV	ΆΤΙΟ	DN _	454.92	8 ft	BAC	KFILL	. Mon	itoring	Well N	1W-1
DRIL	LING C	ONTRACTOR Holcomb Foundation Engineering, Co	GROUN	D WATI	ER L	EVE	LS:							
DRIL	LING M	ETHOD HSA with Auto Hammer	Σ N	HILE D	RILL	ING	1.0 ft	/ Elev 4	53.9 ft					
CEC	REP _	CAC CHECKED BY MDJ	▼ A	T END (of d	RILL	ING 🔄	3.0 ft / El	ev 451.9	9 ft				
NOTE	ES		₩ 2 4	4hrs AF	TER	DRII	LING	3.0 ft /	Elev 451	.9 ft				
Elevation (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		o DEPTH (ft)	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)		▲ SP 20 4 PL 20 4 20 4	T N VA 40 (40 (40 (UCS (ts 2	LUE 4 <u>50 8</u> LL 50 8 50 8 51) [] 3	30 - 30 4
		ASH: Gray SILT - FLY ASH, moist to wet, very loose, (ASH) ∑				SS 1	0	1-0-1-0 (1)	NP -					•
		Ţ				SS 2A	50	0-0-2 (2)	NP	-		· · · · · · ·	•	•
_ 450		% Gravel ~ 0.1%				SS 2B	50	4-0-0 (0)	NP 4			· · ·	•	•
		% Sand ~ 9.1% % Sand ~ 9.1% % Silt ~ 85.3% % Clay ~ 5.4%				SS 3	50	0-0-0-0 (0)	NP 4			· · · · ·	•	
		ASH: Gray and brown SANDY SILT - BOTTOM ASH, moist to very loose, (ASH) ASH: Gray SILT - FLY ASH, moist to wet, very loose, (ASH)	o wet, _/ – J			SS 4A	50	0-0-0 (0)	NP 4			· · · · · ·	•	- - - - - - - - - - - - - - - - - - -
_ 445_						SS 4B	50	0-0-0 (0)	NP 4		<u>.</u>	· · ·	•	
_ ·		Black SILTY CLAY, moist, medium stiff, (CL)				SS 5	100	2-3-3-3 (6)	1.0 P				•	•
		End of boring at 13.0 feet.												

		Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026	BORING NUMBER B3/LPZ-3 PAGE 1 OF 1									
CLIEI	NT Dv	neav Inc Hennepin Station	PROJE	CT NAM	E Old	l West As	sh Pond S	Svstem:	Data (Sap An	alvsis	
PRO.		JMBER 164-478	PROJE			Henne	oin Statio	n Henn	nepin III	inois		
DATE	STAR	TED 3/16/17 COMPLETED 3/16/17	GROUN			460 19) ft	BAC	KFII I	Monit	orina We	II MW-3
			GROUN			/FI S:	/ 10	_ DAU			oning we	
		ETHOD HSA with Auto Hammer				C 30 fi		57 2 ft				
CEC			- <u> </u>					<i>J1.2</i> II				
NOTE	ES		¥ 2	thrs AF	TERD	RILLING	 10.7 ft	/ Elev 44	49.5 ft			
Elevation (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		DEPTH (ft)	SAMPLE TYPE NIJMBFR	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	2	▲ SPT 0 4 PL 0 4 □ 0	N VALU 0 60 MC 0 60 ICS (tsf) [E▲ 80 LL 80 □
460		ASH: Dark gray SANDY SILT - BOTTOM ASH, trace gravel, m to wet, loose to dense, (ASH)	noist						-			
		∇				s 100	2-3-3-3 (6)	NP				
		<u>×</u>			s 2	S 100	3-7-11 (18)	NP				
455					S 2	S 100	9-10-11 (21)	NP				
-					s	S 100	3-3-4-7 (7)	NP				
					s 4	S 93	2-8-20 (28)	NP				
450		ASH: Dark gray SILT - FLY ASH, wet, loose, (ASH)		10	S 4	S 93	14-13- 10 (23)	NP				
		Black SILTY CLAY, moist, stiff, (CL)			s s	S 85	0-1-4-4 (5)	NP 1.5 P 2.5 P				
	2////2	End of boring at 13.0 feet.		⊢ −	<u>v 1</u>			2.0 F	-			

	Ħ	Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026	BORING NUMBER B1//LPZ-1/ PAGE 1 OF 2								Z-17 OF 2
CLIE	NT Dy	negy Inc Hennepin Station	PROJE	CT NAM	E Old	West As	h Pond	System:	Data Gap Ar	alysis	
PRO	JECT N	UMBER _ 164-478	PROJE		ATION	Hennep	oin Static	on, Henne	epin, Illinois		
DAT	E STAR	TED _3/14/17 COMPLETED _3/14/17	GROUN	ID ELEV	ATION	460.93	1 ft	BACK	KFILL Moni	toring Well	MW-17
DRIL	LING C	ONTRACTOR Holcomb Foundation Engineering, Co	GROUN		ER LEV	ELS:					
DRIL	LING M	ETHOD CME Continuous Sampler	$\overline{\Delta}$ M	/HILE DI	RILLIN	G <u>8.0 ft</u>	/ Elev 4	52.9 ft			
CEC	REP	CAC CHECKED BY MDJ	Α	T END C	of Dri	LING _					
NOT	ES		<u>¥</u> 4	8hrs AF	TERDF	RILLING	13.0 ft	/ Elev 44	7.9 ft		
Elevation (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	▲ SPT 20 4 PL 20 4 □ U	N VALUE 0 60 MC 0 60 JCS (tsf) □ 2 3	E ▲ 80 LL ■ 80] 4
		ASH: Dark gray SILTY SAND - BOTTOM ASH, trace gravel, r medium dense to dense, (ASH)	noist,	 - 5 		³ 54 72	-	NP			
450		ASH: Gray SILT - FLY ASH, wet, (ASH)		 		5 84 5 58		NP			
		% Gravel ~ 3.2% % Sand ~ 79.2% % Silt ~ 14.7%		20							

(Continued Next Page)

Civil & Environmental Consultants, Inc. 555 Butterfield Road, Suite 300 Lombard, Illinois 60148 Telephone: 630-963-6026

BORING NUMBER B17/LPZ-17

PAGE 2 OF 2

CLIENT _ Dynegy Inc. - Hennepin Station PROJECT NAME _ Old West Ash Pond System: Data Gap Analysis

PRO	JECT N	UMBER 164-478	PROJECT LOCATION Hennepin Station, Hennepin, Illinois					epin, Illinois	
Elevation (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ UCS (tsf) □
GEOTECH - MDJ 164-478 WEST POND BORINGS.GPJ GEOTECHDATA.GDT 4/6/17		% Clay ~ 2.9% End of boring at 20.0 feet.							

Monit	orin	g W	ell N	lo.	L4			
PROJECT Title: Hennepin West Ash Impoundment DRILL RIG: Hollow Stem Auger DRILLER: Boart Longyear	da Hoi Fin	TE: 08- Le dia Ial gw	-21-95 : 7 in. : 13.25 1	ft.		loc Sai Hoi	BED BY: Hensel/Tu IPLER: Split spoon LE ELEV: 461.95 ft. MSL	
DESCRIPTION		USCS CLASS	GRAPHIC LOG	DЕРТН	SAMPLE		WELL CONSTRUCTION DETAIL	
				-20-				
Blind Drilling (Refer to boring log for MW 24 for lithologi description)	ic			-21- -22- -23- -24- -25- -26- -26- -27- -28- -28- -28- -29-			Sediment Trap	
	ofes'			-30- -31- -32- -33- -34- -35- -36- -37- -38- -39- -39- -40-			Project No.	
STMI 2511 N. 124th St. Suite 205 Brookfield, Wisconsin 53005-8208	otes:	·					Project No. 135–1.31 Page 2 of 2	1

	See •				
	•				

24

W-4

OF

BORING SHEET 1

PROJECT_

Hydrogeologic Study Hennepin Power Plant 82-1293 JOB NO.

	\$	SAMP	LE		DESCRIPTION OF MATERIALS		(bcf)	01	·	Shear	Stre	ngt 1	h, t	st	1/- 1	
Ξ		பய	(ui)	RK #	(Color Modifier MATERIAL Classification)	BLOWS (per 6 jn)	GHT	0	<u>م</u> . 	ت الا	1 1	11	÷.	2) z / د ا	21/2
ртн	ABEF	вvа ТҮР	NCET	EMA	Soil Classification System Unified		r wei		PL +		NA	<u>ис</u>			_ LL _ X	
DE	NUN	NTE	OVE	E BI			LINN	0			5	0			1	00
			REC	SE	Surface Elevation		DRY	0		HOCX	5		esig	јпац 		100
	1	AS			Brown Sandy CLAY w/Gravel, CL										$\frac{1}{1}$	
 					Dark Gray FLYASH w/Bottom			╽┝	+					-+	+	\neg
-5-	2	SS	18/16		Ash, ML	3-4-5]					·		_		4
					•										\pm	
								-	+	+					<u> </u>	_
-10-	२	55	18/18			2-5-6]	F					ĺ	_	_	1
			10710													
					· · ·									\rightarrow	+	\neg
- 15 -	4	55	18/18			1-2-3	1					•		_	<u> </u>	4
			10/10		Dark Gray Silty CLAY, CL		1									
			· ·												-+	
-20-			19/0			1-1-2	1				·				1	1
	2	-22	10/9				1	-		+						\neg
														\square	_	
- 25		<u> </u>				WH-2-2	-				•					
[6	55	18/18				1		+	┼╌┼				┝──┤	\rightarrow	\neg
	1													\square	\downarrow	
						WH-2-3	-								\pm	-
- 30-	7	SS	18/16				-	F							-+	-
							·									
ļ					Sand, OH	WH-1-2	-		+	++	•					-
- 35-	8	SS	18/18					Π								
		GME		<u>Ho</u> 12	11ow Auger /10, 13/82		GR	OU Enc	ND	WAT tered a	ER	ĽΕ/	VE	LS	1	Fee
DRIL	LED	BY -	U	Ro	berts		66	Hou	irs a	fter co	mpl	etio	n 1	4.1	j i	Fee
	GED	BY		<u>Ma</u> Ye	s		د_ل 	3y5	a a	iter co fter co	omple omple	etio	п (П	يد. 	! !	-ee Fee

NOTE: Refer to the attached GENERAL NOTES and NOTATION USED ON RECORDS OF SUBSURFACE EXPLORATION for abbreviations, explanations, and qualifications relative to this log.

John Mathes & Associates, Inc. •

.

NEUNU UF JUDJUNFAUE EAFLUNAHUN

PROJECT Hydrogeologic Study Hennepin Power Plant 82-1293 JOB NO ..

BORING	W-	4	(24
SHEET 2	_OF	2	_/	\sim

	\$	SAMP	LE		DESCRIPTION OF MATERIALS		(pcf)	Shear Strength, tsf SV Δ QP/2 QU/2O
(11)	æ		(u) 0 (lu)	ARK #	(Color Modifier MATERIAL Classification)	BLOWS (per 6 in)	EIGHT	$0 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2}$
ЕРТН	MBE	ERVA TYF	NNCE EREI	1EM4	Soil Classification System Unified		liT WI	PL NMC LL +× 0 50 100
a	n	ANI		SEE I	Surface Elevation 460.6	· •	RY UN	Rock Quality Designation
			ä					
					Dark Gray CLAY w/Silt Trace Sand, OH			
-40-		S S	18/18			<u>WH-WH-2</u>		
- 45-	10	SS	18/18			WH-2-1		
- 50-	11	SS	18/12		Dark Gray Fine SAND w/Clay, SC	<u>WH-3-8</u>		
- 55	12	ss	18/4	1		1-4-7		
					Dark Grav Gravelly Fine SAND			
-60	13	ss	18/18		Trace Silt, SP-SM	8-15-5		
					Grav GRAVEL w/Sand Trace Clay,			
_65		SS	18/16		, GP-GC TOB	14-17-22	2	
					1. Water level approximately 6.0' appears same as	/		
-70	-							
DRI	LLIN	G ME	THOD_	Ho	I low Auger		GI	ROUNDWATER LEVELS
DAT		RILLE) BY	D	Ro	berts		<u>66</u>	Hours after completion 14.0 Fee
LOC	GE	DBY	*	Ma Ye	xeiner		نڭ 2	ays after completion 6.7 Fea after completion Fea
PIEZ	ZOM	ETER		16	3			

NOTE: Refer to the attached GENERAL NOTES and NOTATION USED ON RECORDS for abbreviations, explanations, and qualifications relative to this log. Ur. SUBSURF

John Mathes & Associates, Inc. .

APPENDIX C SUPPORTING GROUNDWATER ANALYTICAL DATA

APPENDIX C.

SUPPORTING GROUNDWATER ANALYTICAL DATA 35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION HENNEPIN POWER PLANT OLD WEST ASH POND HENNEPIN, IL

Well ID	Well Type	Date	Parameter	Result	Unit
22	Compliance	12/10/2015	Boron, total	6.01	mg/L
22	Compliance	03/09/2016	Boron, total	5.85	mg/L
22	Compliance	06/07/2016	Boron, total	6.28	mg/L
22	Compliance	09/15/2016	Boron, total	5.75	mg/L
22	Compliance	12/07/2016	Boron, total	6.72	mg/L
22	Compliance	02/21/2017	Boron, total	5.47	mg/L
22	Compliance	04/25/2017	Boron, total	5.29	mg/L
22	Compliance	06/08/2017	Boron, total	4.99	mg/L
22	Compliance	06/13/2018	Boron, total	5.57	mg/L
22	Compliance	09/12/2018	Boron, total	4.66	mg/L
22	Compliance	12/12/2018	Boron, total	4.92	mg/L
22	Compliance	03/13/2019	Boron, total	5.75	mg/L
22	Compliance	06/19/2019	Boron, total	5.62	mg/L
22	Compliance	09/17/2019	Boron, total	5.37	mg/L
22	Compliance	12/11/2019	Boron, total	5.70	mg/L
22	Compliance	03/11/2020	Boron, total	5.20	mg/L
22	Compliance	06/03/2020	Boron, total	5.07	mg/L
22	Compliance	09/02/2020	Boron, total	4.72	mg/L
22	Compliance	12/09/2020	Boron, total	4.77	mg/L
22	Compliance	03/19/2021	Boron, total	4.89	mg/L
22	Compliance	06/23/2021	Boron, total	4.91	mg/L
22	Compliance	09/08/2021	Boron, total	4.39	mg/L
22	Compliance	12/08/2021	Boron, total	3.81	mg/L
22	Compliance	03/22/2022	Boron, total	4.84	mg/L
22	Compliance	06/07/2022	Boron, total	3.95	mg/L
22	Compliance	09/13/2022	Boron, total	3.42	mg/L
22	Compliance	12/27/2022	Boron, total	4.44	mg/L
22	Compliance	02/28/2023	Boron, total	4.51	mg/L
22	Compliance	05/31/2023	Boron, total	3.44	mg/L
22	Compliance	12/10/2015	Cadmium, total	0.00140	mg/L
22	Compliance	03/09/2016	Cadmium, total	0.00170	mg/L
22	Compliance	06/07/2016	Cadmium, total	0.00230	mg/L
22	Compliance	09/15/2016	Cadmium, total	0.00310	mg/L
22	Compliance	12/07/2016	Cadmium, total	0.00440	mg/L
22	Compliance	02/21/2017	Cadmium, total	0.00390	mg/L
22	Compliance	04/25/2017	Cadmium, total	0.00360	mg/L
22	Compliance	06/08/2017	Cadmium, total	0.00320	mg/L
22	Compliance	06/13/2018	Cadmium, total	0.00430	mg/L
22	Compliance	09/12/2018	Cadmium, total	0.00570	mg/L
22	Compliance	12/12/2018	Cadmium, total	0.00760	mg/L
22	Compliance	03/13/2019	Cadmium, total	0.00570	mg/L
22	Compliance	06/19/2019	Cadmium, total	0.00480	mg/L
22	Compliance	09/17/2019	Cadmium, total	0.00480	mg/L
22	Compliance	12/11/2019	Cadmium, total	0.00550	mg/L
22	Compliance	03/11/2020	Cadmium, total	0.00500	mg/L
22	Compliance	06/03/2020	Cadmium, total	0.00530	mg/L

RAMBOLL

APPENDIX C.

SUPPORTING GROUNDWATER ANALYTICAL DATA 35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION HENNEPIN POWER PLANT OLD WEST ASH POND HENNEPIN, IL

Well ID	Well Type	Date	Parameter	Result	Unit
22	Compliance	09/02/2020	Cadmium, total	0.00530	mg/L
22	Compliance	12/09/2020	Cadmium, total	0.00900	mg/L
22	Compliance	03/19/2021	Cadmium, total	0.00590	mg/L
22	Compliance	06/23/2021	Cadmium, total	0.00600	mg/L
22	Compliance	09/08/2021	Cadmium, total	0.00540	mg/L
22	Compliance	12/08/2021	Cadmium, total	0.00540	mg/L
22	Compliance	03/22/2022	Cadmium, total	0.00570	mg/L
22	Compliance	06/07/2022	Cadmium, total	0.00570	mg/L
22	Compliance	09/13/2022	Cadmium, total	0.00570	mg/L
22	Compliance	12/27/2022	Cadmium, total	0.00590	mg/L
22	Compliance	02/28/2023	Cadmium, total	0.00960	mg/L
22	Compliance	05/31/2023	Cadmium, total	0.00520	mg/L
22	Compliance	12/10/2015	Sulfate, total	221	mg/L
22	Compliance	03/09/2016	Sulfate, total	261	mg/L
22	Compliance	06/07/2016	Sulfate, total	255	mg/L
22	Compliance	09/15/2016	Sulfate, total	208	mg/L
22	Compliance	12/07/2016	Sulfate, total	204	mg/L
22	Compliance	02/21/2017	Sulfate, total	197	mg/L
22	Compliance	04/25/2017	Sulfate, total	213	mg/L
22	Compliance	06/08/2017	Sulfate, total	229	mg/L
22	Compliance	06/13/2018	Sulfate, total	219	mg/L
22	Compliance	09/12/2018	Sulfate, total	207	mg/L
22	Compliance	12/12/2018	Sulfate, total	181	mg/L
22	Compliance	03/13/2019	Sulfate, total	179	mg/L
22	Compliance	06/19/2019	Sulfate, total	249	mg/L
22	Compliance	09/17/2019	Sulfate, total	204	mg/L
22	Compliance	12/11/2019	Sulfate, total	187	mg/L
22	Compliance	03/11/2020	Sulfate, total	220	mg/L
22	Compliance	06/03/2020	Sulfate, total	214	mg/L
22	Compliance	09/02/2020	Sulfate, total	206	mg/L
22	Compliance	12/09/2020	Sulfate, total	201	mg/L
22	Compliance	03/19/2021	Sulfate, total	179	mg/L
22	Compliance	06/23/2021	Sulfate, total	168	mg/L
22	Compliance	09/08/2021	Sulfate, total	160	mg/L
22	Compliance	12/08/2021	Sulfate, total	146	mg/L
22	Compliance	03/22/2022	Sulfate, total	145	mg/L
22	Compliance	06/07/2022	Sulfate, total	134	mg/L
22	Compliance	09/13/2022	Sulfate, total	142	mg/L
22	Compliance	12/27/2022	Sulfate, total	141	mg/L
22	Compliance	02/28/2023	Sulfate, total	145	mg/L
22	Compliance	05/31/2023	Sulfate, total	123	mg/L

APPENDIX C.

SUPPORTING GROUNDWATER ANALYTICAL DATA 35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION HENNEPIN POWER PLANT OLD WEST ASH POND HENNEPIN, IL

Notes: mg/L = milligrams per liter

APPENDIX D TECHNICAL MEMORANDUM EVALUATION OF CADMIUM SOURCES WITHIN AQUIFER SOLIDS, HENNEPIN POWER PLANT - WEST ASH POND SYSTEM

TECHNICAL MEMORANDUM

Date:	October 26, 2023
To:	Brian Voelker, Dynegy Midwest Generation, LLC
Copies to:	Stu Cravens and Phil Morris, Dynegy Midwest Generation, LLC Eric Tlachac and Brian Hennings, Ramboll
From:	Allison Kreinberg and Ryan Fimmen, PhD, Geosyntec Consultants
Subject:	Evaluation of Cadmium Sources within Aquifer Solids Hennepin Power Plant – West Ash Pond System

This document serves as an Appendix to the November 10, 2023, Alternative Source Demonstration (ASD) for the Hennepin (HEN) Power Plant West Ash Pond System (WAPS) (Site) for the Quarter 2 2023 sampling event completed to fulfill the requirements of Title 35 of the Illinois Administrative Code (IAC) § 845.650(e). A previous ASD prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) in May 2023 concluded that an exceedance of cadmium above the groundwater protection standard (GWPS) at downgradient monitoring well #22 could be attributed to sources other than the WAPS and was potentially related to changing groundwater pH (Ramboll 2023). Geosyntec Consultants, Inc. (Geosyntec) has completed a review of geochemical and site conditions at the Site to evaluate the influence of the uppermost aquifer solid-phase mineralogy and geochemical modeling, this technical memorandum demonstrates that naturally occurring cadmium associated with aquifer solids throughout the Site is a source of elevated cadmium in Site groundwater.

SITE CONDITIONS

Site geology consists primarily of unlithified alluvial and glacial deposits overlying shale bedrock. These alluvial deposits consist of the fine-grained Cahokia Alluvium, and the gravelly, glacially deposited Henry Formation. The Cahokia Alluvium deposits at the Site extend to depths of less than 20 feet and are composed of sandy silts and clays that are interbedded with sand and gravel (OBG 2017). Henry Formation deposits at the Site underlie the Cahokia Alluvium. These deposits

extend in depth to the uppermost bedrock (to a maximum of 130 feet dependent upon location at the Site) and are composed of coarse-grained materials that include gravel, coarse sands, and cobbles. The Pennsylvanian-age bedrock consists of interbedded layers of shale with thin limestone, sandstone, and coal beds.

The Henry Formation and alluvium together comprise the Uppermost Aquifer (UA) at the WAPS and extend from the water table to the bedrock. The UA is unconfined and extends from the water table to the bedrock. Additional information regarding site hydrogeology and stratigraphy is provided in the ASD prepared by Ramboll.

AQUIFER SOLIDS EVALUATION

The previous ASD report for cadmium at well #22 completed by Ramboll (2023) identified naturally occurring cadmium within soil samples collected from soil borings near the Hennepin East Ash Pond System. Additional aquifer solids samples were collected near the WAPS by Geosyntec and analyzed to evaluate whether subsurface material in the vicinity of the WAPS may account for reported cadmium concentrations in groundwater. The analytical results of the aquifer solids demonstrate that the aqueous groundwater cadmium concentrations at monitoring well #22 in excess of the GWPS are derived from the native mineralogy.

Samples were collected from soil borings advanced in March 2021 adjacent to background well #34 and compliance well #22¹. One sample was collected from the screened interval of monitoring well #34 (32–33 feet bgs) and two samples were collected from the screened interval of monitoring well #22 (26–27 feet bgs and 29–30 feet bgs). Well construction forms for both wells are provided in **Attachment 1**. Field observations of the sample lithologies (provided in Table 1) were generally consistent with the lithologies for the screened intervals of well #34 and well #22 provided in the boring logs (**Attachment 1**).

Samples were submitted for analysis of total cadmium, cadmium distribution within the aquifer solids using sequential extraction procedure (SEP), and mineralogy via X-ray diffraction (XRD). Results for total and SEP analyses of cadmium in these samples are presented in **Table 1**, and the analytical laboratory reports are provided as **Attachment 2**.

SEP is an analytical technique that uses progressively stronger reagents to solubilize metals from specific phases within the solid matrix and is used to infer associations between constituents and different classes of solids (Tessier et al. 1979). These classes of solids are identified based on their

¹ An aquifer solids sample was also collected from the screened interval of well #51 during this sampling event. Results of this sample are excluded from subsequent results tables and discussion to emphasize relevant findings. Analytical results of this sample are included in the Attachments section.

²⁰²³⁻¹⁰ Hennepin WAPS Cadmium Evaluation_Part 845

solubility under different reagents and include the exchangeable fraction, the carbonate-bound fraction, the iron/manganese oxide-bound fraction, the organic matter-bound fraction, and the residual fraction. To evaluate data quality in an SEP analysis, first the sum of individual extraction steps from the SEP was compared to the total cadmium concentration. The sum of the SEP is not expected to be exactly equal to the total metals analysis but should be generally consistent with the total metals result. The total cadmium concentrations ranged from 0.53 to 2.9 micrograms per gram of soil (μ g/g). The summed concentrations of cadmium from the SEP analyses ranged from 0.45 to 2.6 μ g/g. The results were generally consistent between the total metals analyses and the summed SEP steps, indicating good metals recovery and data quality.

These results indicate that cadmium is naturally present in both background and compliance well solid-phase samples at the Site. The highest cadmium concentrations were observed in the samples from monitoring well #22. The largest components of cadmium in all three samples were found to be associated with the weak-acid extractable fraction (including carbonates) and the reducing agent extractable fraction (including iron and manganese oxides) (**Table 1**). Smaller components of cadmium were found to be associated with the other fractions, although 69%–83% of cadmium from all three samples was associated with a combination of carbonates and iron/manganese oxides.

Mineralogical analyses were completed using XRD to evaluate the mineralogy of the aquifer solids. Mineralogy of the samples analyzed consists primarily of quartz, various carbonate minerals (dolomite, calcite, and ankerite), various feldspar minerals (albite and microcline), and muscovite (mica). Of the mineral groups identified as present within the aquifer solids via XRD, SEP testing quantified the largest component of cadmium was leached from the weak-acid extractable and reducing agent extractable fractions, which are often associated with carbonates and oxides, respectively (**Table 1**). Carbonate minerals were found in each sample analyzed at abundances of 18 to 25 weight percent (wt. %) (**Table 2**). Magnetite, an iron oxide mineral, was detected in every sample analyzed (**Table 2**). Based on the XRD results, these minerals are abundant in samples from both well #22 and well #34 of the WAPS, suggesting that these cadmium-associated minerals occur in the UA throughout the Site and constitute a natural source of cadmium. Mineralogy results are provided in **Table 2** and the laboratory analytical report is included as **Attachment 3**.

The association of cadmium with carbonate minerals, specifically calcite, is a well-studied phenomenon. Cadmium ions can readily substitute for calcium ions in the calcite crystal structure due to similarities in charge and ionic radii between the two ions (Lorens 1981, Tesoriero and Pankow 1996). This process is known to occur via initial sorption of aqueous cadmium ions to the hydrated surface layer of calcite crystals, which then become incorporated into the calcite crystal structure during new layer growth in a process known as co-precipitation (Papadopoulos and

Rowell 1988, Reeder 1996, Horner et al. 2011, Callagon et al. 2017). The primary control on calcite solubility in groundwater is pH, with calcite solubility increasing at lower pH.

Sorption of cadmium to iron oxide minerals is also well documented, as divalent transition metals such as cadmium are known to bind strongly to iron and manganese oxides (Cowan et al. 1991, Loganathan et al. 2012). Cadmium sorption to iron oxides is primarily a function of pH, aqueous cadmium concentrations, and aqueous concentrations of competitive divalent cations such as calcium and magnesium (Cowan et al. 1991).

Aquifer solids analyses completed for well #34 and well #22 show that aquifer solids are composed of approximately 18-25% carbonate minerals. SEP results indicate the dissolution of cadmium from aquifer solids with a weak acid, consistent with cadmium association with carbonate minerals. Therefore, cadmium co-precipitation with or dissolution from carbonate minerals would influence concentrations of aqueous cadmium. Dissolution of naturally occurring cadmium-bearing carbonates constitutes a potential alternative source of cadmium. SEP results also indicated that cadmium is associated with iron/manganese oxides such as magnetite, which was detected in the samples from both wells #34 and #22. Desorption of cadmium from magnetite constitutes an additional potential alternative source of cadmium in groundwater.

While it is possible that cadmium associated with the CCR could be mobilized, released, and then re-adsorbed onto iron oxides or accumulated in carbonate minerals within the aquifer downgradient of the unit, this is not likely at the WAPS because: 1.) cadmium is not detected or detected at very low-level concentrations (i.e., 0.0013 mg/L) in the porewater, and 2.) cadmium was identified in aquifer solids from adjacent to background well #34, which is unimpacted by the unit. These observations suggests that the cadmium is likely naturally occurring at the Site.

GEOCHEMICAL MODELING

The previous ASD report prepared by Ramboll (2023) for cadmium at well #22 noted a downward shift in pH values of groundwater at well #22 since approximately 2013 with a corresponding increase in cadmium concentrations (**Figure 1**). A decline in pH conditions may affect aqueous cadmium concentrations due to changes in cadmium speciation by destabilizing cadmium-substituted carbonate minerals in the UA. A decrease in pH could also result in mobilization of cadmium from the existing iron oxide mineral phases such as magnetite via desorption of cadmium from mineral surfaces and dissolution of these iron oxide minerals.

Geochemical equilibrium speciation modeling was used to evaluate the impact of pH changes on aqueous cadmium concentrations at well #22. Thermodynamic reaction pathway modeling was conducted using the React module of Geochemist's Workbench (GWB) geochemical modeling

software package (version 17.0.1). The purpose of the model is to show the relationship between pH and aqueous cadmium concentrations as a function of the dissolution of cadmium-bearing carbonates and the desorption of cadmium from iron oxides.

The initial aqueous component of the geochemical model was populated using the groundwater composition of the most recent sample collected at well #22 on May 31, 2023 (Table 3). The pH value of the aqueous component was not defined and was set as a sliding scale to test the hypothesis that pH changes may cause changes to aqueous cadmium concentrations. Solid-phase reactants were defined based on XRD results of the well #22 samples (Table 3). Magnetite was included in the system with an abundance of 0.5 wt. % to evaluate the influence of sorption and desorption of cadmium from the iron oxide fraction. To represent the cadmium-bearing carbonate phase, a cadmium-calcite source phase was included as a reactant at an abundance of 5.25 wt. % (averaged from calcite abundances of the two well #22 samples) to evaluate the impact that the dissolution of calcite with co-precipitated cadmium has on aqueous cadmium concentrations. This source phase was defined with a mineral formula of (Ca0.85Cd0.15)CO3, which was determined by calibrating the model output to the May 31, 2023, well #22 analytical results for aqueous cadmium and calcium. The calcite-otavite (cadmium carbonate) solid-solution series can occur in nature across all proportion ranges depending upon geochemical conditions. This can include either 100% calcium carbonate, 100% cadmium carbonate, or any proportion of calcium and cadmium carbonate in between these two end member compositions. The selected mineral formula contains a reasonable proportion of cadmium within the crystal structure to represent coprecipitation while still retaining the general calcite crystal structure and thermodynamic traits (Ma et al. 2022).

The WATEQ4F thermodynamic database developed by the United States Geological Survey was modified to include the cadmium-calcite source phase and was used in model calculations. Thermodynamic information for the cadmium-calcite source phase was populated using the experimentally derived solubility constants of the calcite-otavite solid-solution series from Ma et al. (2022). Sorption to iron oxides was incorporated into model calculations using the Dzombak and Morel (1990) two-layer surface complexation model, which is provided in GWB as sorption dataset FeOH.sdat. This sorption dataset was modified to include magnetite as an iron oxide mineral containing sorption sites. Iron minerals hematite, goethite, and Fe(OH)₃(s) were suppressed during model simulations due to their absence in XRD results. Pure (*i.e.*, non-substituted) calcite was suppressed in favor of using of the cadmium-calcite source phase in calculations. A porosity value of 20% was used for the UA, as indicated in the *Hydrogeologic Monitoring Plan* (OBG 2017).

The geochemical model was used to show predictions of cadmium and calcium concentrations over the pH range observed in groundwater at well #22 from 2013 to the present (**Figure 2**). Calcium concentrations are shown to illustrate the effects of dissolution of the cadmium-calcite

source phase on aqueous conditions. Generally, both calcium and cadmium concentrations are predicted to increase as pH decreases toward neutral. Aqueous concentrations of cadmium are predicted to increase with decreasing pH within the pH range of 8.2 standard units (SU) to approximately 7.2 SU due to dissolution of the cadmium-calcite source phase, which decreases from approximately 3.4 wt. % to 2.3 wt. % (Figure 3A). Around a pH value of 7.7 SU, the model predicts that desorption of cadmium from iron oxide minerals (magnetite) will begin to occur. As pH continues to decrease, aqueous concentrations of cadmium are predicted to increase due to the concurrent effects of the dissolution of the cadmium-calcite phase and desorption of cadmium from magnetite (Figure 3B).

The geochemical model was calibrated by adjusting the cadmium-calcium ratio of the source phase to align (as near as possible) with the predicted aqueous cadmium and calcium concentrations at a pH of 7.58 SU (pH measured at well #22 on May 31, 2023 used for the aqueous input) with reported values. At a pH of 7.58 SU, the model predicted aqueous cadmium and calcium concentrations of 0.0024 and 71.74 mg/L respectively, compared to reported well #22 concentrations of 0.0052 and 87.1 mg/L (**Figure 2**). These results indicate that the model output aligns closely with observed values and that the model predictions are reasonable when compared to previously reported cadmium substitution rates (Ma et. al 2022).

CONCLUSION

Naturally occurring cadmium associated with the minerals of the UA solids at the Site was identified as a source for cadmium in Site groundwater. Solid-phase samples collected from background well #34 and compliance well #22 contained cadmium, with the highest total cadmium concentrations observed in samples collected from the screened interval of the well #22. SEP analyses of the solid-phase samples determined that the majority of cadmium in the solid phase is associated with the carbonate and iron/manganese oxide fractions. XRD confirmed the presence of magnetite (an iron oxide mineral) in all samples analyzed and identified carbonate minerals that make up approximately 18-25% of the solid phase. These solid phase results verify the presence of naturally occurring cadmium within the UA and suggest dual mechanisms of cadmium mobilization that are strongly supported by literature: (1) the dissolution of calcite containing coprecipitated cadmium within the crystal structure, and (2) the desorption of cadmium from iron oxide mineral surfaces (such as magnetite).

These potential mechanisms of cadmium mobilization were evaluated using a thermodynamic reaction pathway model. Groundwater analytical data and mineralogy results were used as model inputs to assess the impact that shifts in pH values of groundwater at monitoring well #22 are predicted to have on aqueous cadmium concentrations. Model results were successfully calibrated to observed concentrations, and the model supports the conclusion that both mechanisms of

cadmium mobilization should occur within the pH range of groundwater observed at well #22 and may result in increases in aqueous cadmium concentrations as a function of observed decreases in pH of groundwater at the well.

The solid-phase assessment and geochemical modeling efforts support the determination that aqueous cadmium concentration increases at downgradient monitoring well #22 are related to naturally occurring mineral-water interactions within the UA and not a release from the WAPS.

REFERENCES

- Callagon, E.B.R., S.S. Lee, P.J. Eng, N. Laanait, N.C. Sturchio, K.L. Nagy, and P. Fenter. 2017. "Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates." *Geochimica et Cosmochimica Acta* 205(15):360-380.
- Cowan, C., J. M. Zachara, and C. T. Resch. 1991. "Cadmium adsorption on iron oxides in the presence of alkaline-earth elements." *Environmental Science Technologies* 25(3):437–446.
- Dzombak, D. A., and F. M. Morel. 1990. *Surface Complexation Modeling: Hydrous Ferric Oxide*. New York: Wiley-Interscience.
- Horner, T.J., R. E. M. Rickaby, and G. M. Henderson. 2011. "Isotopic fractionation of cadmium into calcite." *Earth and Planetary Science Letters* 312(1):243–253.
- Loganathan, P., S. Vigneswaran, J. Kandasamy, and R. Naidu. 2012. "Cadmium sorption and desorption in soils: a review." *Critical Reviews in Environmental Science and Technology* 42(5):489–533.
- Lorens, R. B. 1981. "Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rates." *Geochimica et Cosmochimica Acta* 45(4):553–561.
- Ma, C., F. Xu, Z. Zhu, H. Yang, P. Nong, Z. Kang, S. Tang, L. Zhang, and Y. Zhu. 2022. "Dissolution and solubility of the calcite-otavite solid solutions [(Ca_{1-x}Cd_x)CO₃] at 25 °C." *Minerals* 12(6):756.
- OBG. 2017. *Hydrogeologic Monitoring Plan Hennepin West Ash Pond System*. Hennepin Power Station, Hennepin, Illinois. October.
- Papadopoulos, P., and D. L. Rowell. 1988. "The reactions of cadmium with calcium carbonate surfaces." *European Journal of Soil Science* 39(1):23–36.

- Ramboll. 2023. Alternative Source Demonstration Old West Ash Pond (Pond No. 1 and Pond No. 3) and Old West Polishing Pond. Hennepin Power Plant, Hennepin, Illinois, CCR Unit 804. Ramboll Americas Engineering Solutions, Inc. May.
- Reeder, R. J. 1996. "Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth." *Geochimica et Cosmochimica Acta* 60(9):1543–1552.
- Tesoriero, A. J., and J. F. Pankow. 1996. "Solid solution partitioning of Sr, Ba, and Cd to calcite." *Geochimica et Cosmochimica Acta* 60(6):1053–1063.
- Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. "Sequential extraction procedure for the speciation of particulate trace metals." *Analytical Chemistry* 5(7):844–851.

TABLES

Table 1 - Cadmium SEP Results SummaryHennepin Power Plant

	Well ID		SB-2	22	SB-2	22	SB-34		
	Depth (ft)	(26-2	7)	(29-3	0)	(32-33)		
	Location	L	Downgra	ndient	Downgra	ndient	Background		
	Total Cadm	ium	0.76	5	2.9		0.53	3	
SEP	SEP Reagent			SEI	P Results				
Fraction	SEI Reagent		Concentration	% of Total	Concentration	% of Total	Concentration	% of Total	
1	Deionized Water	Water Soluble Fraction	< 0.02		0.04	3%	< 0.02		
2	MgCl ₂	Exchangeable Metals Fraction	<0.02		0.24	9%	< 0.02		
3	Sodium acetate, acetic acid	Metals Bound to Carbonates Fraction	0.37	56%	0.69	27%	0.12	27%	
4	Hydroxylamine HCl and acetic acid	Metals Bound to Fe/Mn Oxides Fraction	0.16	24%	1.1	42%	0.25	56%	
5	HNO_3 , H_2O_2 , and ammonium acetate	Bound to Organic Material Fraction	0.03	5%	0.25	10%	0.03	7%	
6	HNO ₃ , HCl, and HF	Residual Metals Fraction	0.10	15%	0.23	9%	0.05	11%	
SEP Total			0.66	100%	2.6	100%	0.45	100%	

Notes:

SEP - sequential extraction procedure

All results shown in microgram of cadmium per gram of soil ($\mu g/g$).

Non-detect values are shown as less than the detection limit.

The cadmium fraction associated with each SEP phase is shown.

% of total cadmium is calculated from the sum of the SEP fractions.

Table 2 - Summary of X-Ray Diffraction AnalysisHennepin Power Plant

	Well ID		MW-22	MW-22	MW-34
	Depth (ft bgs)		(26-27)	(29-30)	(32-33)
	Location	Downgradient	Downgradient	Upgradient	
	Boring Log Description	Fine sand	Gravel with sand and trace clay	Fine-medium sand	
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)
Quartz	SiO ₂	Silicate	57.0	54.5	53.0
Dolomite	CaMg(CO ₃) ₂	Carbonate	14.4	11.4	2.6
Albite	NaAlSi ₃ O ₈	Feldspar	7.3	9.8	7.1
Calcite	CaCO ₃	Carbonate	7.2	3.3	11.1
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	Mica	2.1	7.4	7.9
Microcline	KAlSi ₃ O ₈	Feldspar	5.2	5.2	5.1
Ankerite	$Ca(Fe,Mg)(CO_3)_2$	Carbonate	2.9	2.8	6.0
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Clay	1.9	2.7	3.4
Kaolinite	$Al_2Si_2O_5(OH)_4$	Clay	0.6	2.5	3.4
Pyrite	FeS ₂	Sulfide	-	-	0.2
Magnetite	Fe ₃ O ₄	Oxide	0.5	0.4	0.4
Actinolite	Ca ₂ (Mg,Fe) ₃ Si ₈ O ₂₂ (OH) ₂	Amphibole	0.8	-	-
	Carbonate Total		25	18	20

Notes:

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Sample depths are shown in feet below ground surface (ft bgs).

wt %: percentage by weight

		Aqueous Phase	
Parameter	Unit	Input Value	Source
Calcium	mg/L	87.1	May 31, 2023 sampling event
Cadmium	mg/L	0.00520	May 31, 2023 sampling event
Chloride	mg/L	97.0	May 31, 2023 sampling event
Iron	mg/L	0.0200	May 31, 2023 sampling event
Magnesium	mg/L	32.0	May 31, 2023 sampling event
Manganese	mg/L	0.0511	May 31, 2023 sampling event
Potassium	mg/L	11.4	May 31, 2023 sampling event
Sodium	mg/L	55.8	May 31, 2023 sampling event
Sulfate	mg/L	123	May 31, 2023 sampling event
Total Alkalinity	mg/L	243	May 31, 2023 sampling event
Eh	V	0.249	May 31, 2023 sampling event
Temperature	°C	15.7	May 31, 2023 sampling event
pН	SU	6.5-9	Model variable
		Solid Phase	
Reactant	Unit	Input Value	Source
Magnetite	wt. %	0.5	March 2021 sample XRD
Cadmium-Calcite Source Phase ^{1,2}	wt. %	5.25	March 2021 sample XRD (calcite)
Porosity	%	20	OBG, 2017

Table 3 - Summary of Geochemical Model InputsGeosyntec Consultants, Inc.Hennepin Power Plant

Notes:

mg/L: milligrams per liter

V: volts

°C: degrees Celsius

SU: standard units

wt. %: weight percentage

1. Mineral formula (Ca_{0.85}Cd_{0.25})CO₃

2: A log K value of -8.98 at 25°C, interpolated from experimental results of Ma et al.

(2022), was used for thermodynamic calculations

FIGURES

ATTACHMENT 1 Boring Logs - Wells 22 and 34

PROJECT Hydrogeologic Study Hennepin Power Plant

JOB NO. 82-1293

BORING ______ SHEET 1__OF __1___ 22

		SAMP	LE		DESCRIPTION OF MATERIALS		(j)	<u> </u>	-	Shear	Streng	th,	tsf]
(1)	-		(ii)	# ¥	(Color Modifier MATERIAL Classification)	BLOWS	iHT (p	SV. 0	Δ.	/2	λΡ/₂□ 1 1	1/2	QU. 2	¹ 20 21 /2
H	E	VAL		AAR	(Color Modiner MATERIAL Classification)	(perom)	VEIG	F	<u>،</u> ۲	<u>ı </u>	NMC	ليستنبط		
EPT	JMB	DT	VERI	REN	Soil Classification SystemUnified		1 1 1	0	+		• 50			× 100
	Ĩ	N N	NO NO	ЭЕE	Surface Elevation 461.4		Σ Σ			Rock	Quality	Desi	gnatio	
		ļ	- H	Ľ			ä		<u>+</u>	<u></u>	50	<u></u>	<u> </u>	100
	1	AS			Brown Sandy CLAY. CL						+-+	$\left - \right $		┼╌┤┃
	_					ļ								
-5-	2	SS	18/9		Gray - Brown Silty CLAY Trace	3-5-5	1							++-
														\square
					Brown Fine SAND w/Silt					┠━╍┠━╍	+			+
-10-	3	SS	18/16		Trace Gravel, SM	5-7-5			-					
	•									┝──┝─	+			+ - 1
					:									
														<u>+</u>
-15-	4	SS	18/16			19-20-28				$\left \right $	+-+-	+		
					Gray-Brown GRAVEL w/Sand									\square
 					Trace Clay, GP				+	┠──┼─	+			┿┥┨
-20-	5	SS	18/18			17-27-38								
										┣━━┣━				
									+	┢╾┼╴	+	┼──		+-1
	,		0 /		••				ļ			-		\square
-25-	ъ	55	18/13		-Coal @ 25.4'	23-18-12			+	$\left - \right - \left - \right $				+-+
														\square
														+
- 30-	7	<u> </u>	10/10		STOWN FINE SAND, SP									+-1
	/	- 3 3 -	10/15		Brown GRAVEL w/Sand Trace	6-11-11			-					1
					Clay, GP-GC				+	┝─┼─	+	$\left - \right $		+-1
	0													\Box
- 35 -	ð	SS	18/6		ТОВ	0-4-6		┝ <u></u> ╋	+		+-+-	$\left - \right $		┼╌┼┨
DRILI	INC	G MET	HOD	Ho	llow Auger	1	GRO		IDV	VATE		VE	LS	الساسسان
DATE	DR	ILLED)	$\frac{12}{80^{1}}$	(9/82		E	Inco	unte	ered a	t <u> </u>)		Feet
LOG	ED	BY		Max	keiner	6	ł	<mark>lour</mark> : ∕S	s aft aft	er co	mpletio mpletio	n n	8.0	Feet Foot
PIEZO	OME	TER .	1	Yes	5	, -			aft	er co	mpletio	n		Feet

NOTE: Refer to the attached GENERAL NOTES and NOTATION USED ON RECORDS OF SUBSURFACE EXPLORATION for abbreviations, explanations, and qualifications relative to this log.

John Mathes & Associates, Inc.

John Mathes & Associates, Inc.

Monitor	ring	g We	ell N	lo. (34	
PROJECT Title: Hennepin West Ash Impoundment DRILL RIB: Hollow Stem Auger DRILLER: Boart Longyear	DATE: 8-22-96 LC HOLE DIA: 7 in. SA FINAL GW: 7.64 ft. HC					LOGGED BY: Mueller/Tu SAMPLER: Split Spoon HOLE ELEV; 448.19 ft. MSL
DESCRIPTION		USCS CLASS	GRAPHIC LOG	DEPTH	SAMPLE	WELL CONSTRUCTION DETAIL
				-20-		
Clayey silt, trace to little fine-grained sand and shell fragments, soft, olive-gray. Wet.				- 21 - - 21 - - 22 - - 23 - - 23 - - 24 -		Eentonite Seal
				25- 26- 27-	- C-1F	
Sand, fine-grained to medium-grained, well-sorted, quartz, trace of silt, loose. Yellowish brown color grades to olive gray below 31 ft.				-28-		
				30- 31- 32- 	-10-10	0.01 Slotted Well Screen
				- 34- 35-		
				-36- - -37- - -38-		
				- 39- - -40-		
STMI	<i>E5</i> .			····		Project No. 135-1.31
2511 N. 124th St. Suite 205 Brookfield, Wisconsin 53005-8208						Page 2 of 2

ATTACHMENT 2 Sequential Extraction Procedure Laboratory Analytical Reports

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

Project : Hennepin MNA

06-April-2021

Date Rec.: 05 March 2021 LR Report: CA14198-MAR21 Reference: P.O# 80003210A

#1 Copy:

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	AnalysisAna Start Date	alysis Start Time	Analysis Completed Date	Analysis Completed Time	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Sulphide [%]	22-Mar-21	12:31	22-Mar-21	17:06	0.09	0.18	< 0.04	0.06
SO4 [%]	23-Mar-21	07:20	25-Mar-21	09:13	< 0.1	< 0.1	< 0.1	< 0.1
TOC [%]	22-Mar-21	02:08	22-Mar-21	17:06	1.92	3.55	0.339	4.55
TS LOI [mg/L]	11-Mar-21	19:34	16-Mar-21	09:39	64100	70500	15400	74800
Ag [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	< 0.05	0.06	< 0.05	0.08
Al [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	5000	8200	2800	3700
As [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	2.7	3.5	5.1	8.4
Ba [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	47	84	20	31
Be [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.29	0.50	0.20	0.87
B [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	5	10	6	7
Bi [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.23	0.59	0.13	0.26
Ca [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	52000	91000	56000	36000
Cd [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.53	0.89	0.76	2.9
Co [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	6.9	9.3	5.2	9.8
Cr [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	45	27	79	130
Cu [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	8	14	11	25
Fe [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	10000	14000	9400	12000
K [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	1200	1900	910	1200
Li [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	6	12	4	6
Mg [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	13000	15000	21000	16000
Mn [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	260	350	310	220
Mo [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.9	2.0	3.1	5.0
Na [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	180	170	190	160
Ni [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	12	19	15	43
Pb [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	6.1	11	7.7	28
P [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	380	430	350	330
Se [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	< 0.7	1.1	< 0.7	0.8
Si [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	7200	4500	5400	1600
Sb [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	< 0.8	< 0.8	< 0.8	< 0.8
Sn [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	1.1	0.6	< 0.5	0.5
TI [μg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.16	0.25	0.13	0.26
U [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.65	1.2	1.3	1.8
V [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	12	18	17	41

0002451834

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS

General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365 Project : Hennepin MNA

LR Report : CA14198-MAR21

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	AnalysisAnal Start Date	lysis Start Time	Analysis Completed	Analysis Completed	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Start Date	Time	Date	Time				
W [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	0.06	0.05	0.07	0.10
Y [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	5.7	8.0	6.1	7.6
Zn [µg/g]	05-Apr-21	14:43	06-Apr-21	11:29	40	67	46	91

CHARTERED Catharine Aunold ATHARINE ARNO CHEMIST Catharine Arnold, B.Sc., C.Chem

Project Specialist, Environment, Health & Safety

0002451834

Page 2 of 2 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 water soluble

Project : Hennepin MNA

30-March-2021

Date Rec. :	05 March 2021
LR Report:	CA14201-MAR21
Reference:	P.O# 800003210A

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis	2: Analysis	3: Analysis	4: Analysis	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
	Start Date	Start Time	Completed Date	Completed Time				
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.05	< 0.05	< 0.05	< 0.05
Al [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	120	140	32	310
As [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.8	0.9	0.2	1.5
Be [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.02	< 0.02	< 0.02	0.02
Β [μg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 1	1	< 1	1
Bi [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	500	600	220	410
Cd [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.02	< 0.02	< 0.02	0.04
Co [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.03	0.04	0.02	0.23
Cr [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	1.6
Cu [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.1	< 0.1	< 0.1	0.5
Fe [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	72	68	22	310
K [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	110	140	99	220
Li [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 2	< 2	< 2	< 2

0002446249

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Project : Hennepin MNA LR Report : CA14201-MAR21

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Date	Analysis Start Time	Analysis Completed Date	Analysis Completed Time	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Mg [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	89	120	100	140
Mn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	1.4	1.3	0.5	4.0
Mo [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.1	0.6	0.1	0.3
Na [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	28	35	40	52
Ni [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	0.7
P [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	4	4	< 3	10
Pb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.1	< 0.1	< 0.1	0.7
Si [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	300	290	120	740
Sb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.016	0.043	0.004	0.069
V [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 3	< 3	< 3	4
W [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.04	< 0.04	< 0.04	< 0.04
Y [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	0.045	0.042	0.029	0.15
Zn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:50	< 0.7	< 0.7	< 0.7	2.5

Fraction 1 - Water Soluble

OnLine LIMS

CHARTERED E CATHARINE ARNOLD Catharine Aurold CHEMIST Catharine Arnold, B.Sc., C.Chem

Project Specialist, Environment, Health & Safety

Page 2 of 2 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 **Fraction 1 Exchangeable Metals**

Project : Hennepin MNA

30-March-2021

Date Rec. :	05 March 2021
LR Report:	CA14202-MAR21
Reference:	P.O# 800003210A

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana Date	alysis Start TimeCo	Analysis ompleted Date	Analysis Completed	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
				Time				
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	3	4	< 1	3
As [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	4.0	4.7	1.5	5.0
Be [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	< 0.02
B [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 1	< 1	< 1	< 1
Bi [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	2200	3200	1000	3500
Cd [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	0.24
Co [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.02	0.03	< 0.01	0.10
Cr [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Cu [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.1	< 0.1	< 0.1	< 0.1
Fe [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	5	6	< 1	2
K [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	57	88	58	92
Li [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 2	< 2	< 2	< 2

0002446254

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Fraction 1 Exchangeable Metals

Project :Hennepin MNALR Report :CA14202-MAR21

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana	Analysis Start Analysis Start		Analysis	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Date	TimeCo	Simpleted Date	Time				
Mn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	6.5	8.5	1.5	17
Mo [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	0.1	< 0.1	< 0.1
Na [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	8	9	11	12
Ni [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Pb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	< 0.1	< 0.1	< 0.1
P [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
Sb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	32	30	45	30
Sn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.017	0.061	0.021	0.024
V [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
W [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.006	0.006	0.004	0.008
Zn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7

Exchangeable Metals

CHARTERED E CATHARINE ARNOLD Catharine Aunold CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

Page 2 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 **Fraction 2 Metals Bound to Carbonates**

Project : Hennepin MNA

30-March-2021

Date Rec. :	05 March 2021
LR Report:	CA14203-MAR21
Reference:	P.O# 800003210A

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Ana	2: alysis Start	3: Analysis	4: Analysis	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
	Date	TimeCo	ompleted Date	Time				
Sample Date & Time					04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	5	2	28	6
As [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	20	22	6.0	7.5
Be [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	0.03
B [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 1	< 1	< 1	1
Bi [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	30000	30000	24000	13000
Cd [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.12	0.11	0.37	0.69
Co [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.39	0.39	1.1	1.1
Cr [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	2.6	9.6
Cu [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	< 0.1	0.2	< 0.1
Fe [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	8	4	41	32
K [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	41	49	45	67
Li [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 2	< 2	< 2	< 2

0002446258

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Project :	Hennepin MNA
LR Report :	CA14203-MAR21

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Anal	Analysis Start Analysis Start Ana		Analysis	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Date	TimeCo	Simpleted Date	Time				
Mg [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	2800	4700	2200	7000
Mn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	78	74	140	69
Mo [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.1	< 0.1	< 0.1	< 0.1
Ni [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	2.7	1.9
Pb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.2	0.2	0.3	0.6
P [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
Sb [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	90	77	70	110
Sn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.039	0.15	0.089	0.030
V [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 3	< 3	< 3	< 3
W [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	0.57	0.26	1.0	0.23
Zn [µg/g]	26-Mar-21	11:11	26-Mar-21	17:51	1.4	1.4	1.6	1.7

Fraction 2 Metals Bound to Carbonates

CHARTERED E CATHARINE ARNOLD Catharine Arnold (Chemist)

Catharine Arnold, B.Sc., C.Chen Project Specialist, Environment, Health & Safety

Page 2 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 Fraction 3 Metals Bound to Fe and Mn Oxides

Project : Hennepin MNA

30-March-2021

Date Rec. :	05 March 2021
LR Report:	CA14204-MAR21
Reference:	P.O# 800003210A

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Sample Date & Time			04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [µg/g]	26-Mar-21	17:51	270	320	270	230
As [µg/g]	26-Mar-21	17:51	0.8	0.9	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	17:51	8.6	29	3.4	5.9
Be [µg/g]	26-Mar-21	17:51	0.14	0.22	0.07	0.48
B [µg/g]	26-Mar-21	17:51	1	2	2	2
Bi [µg/g]	26-Mar-21	17:51	0.12	0.29	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	17:51	18000	49000	30000	18000
Cd [µg/g]	26-Mar-21	17:51	0.25	0.59	0.16	1.1
Co [µg/g]	26-Mar-21	17:51	1.4	2.2	0.70	2.6
Cr [µg/g]	26-Mar-21	17:51	14	5.3	30	28
Cu [µg/g]	26-Mar-21	17:51	0.1	< 0.1	1.6	0.3
Fe [µg/g]	26-Mar-21	17:51	3100	2500	1600	1100
K [µg/g]	26-Mar-21	17:51	54	73	61	82
Li [µg/g]	26-Mar-21	17:51	< 2	< 2	< 2	< 2

0002446262

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Project :Hennepin MNALR Report :CA14204-MAR21

Analysis	3:	4:	5:	6:	7:	8:
	Analysis Completed Date	Analysis Completed	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
	Completed Date	Time				
Mg [µg/g]	26-Mar-21	17:51	9000	7000	17000	10000
Mn [µg/g]	26-Mar-21	17:51	110	170	90	65
Mo [µg/g]	26-Mar-21	17:51	0.1	0.2	0.5	0.2
Na [µg/g]	26-Mar-21	17:51	850	3700	540	2200
Ni [µg/g]	26-Mar-21	17:51	2.9	3.7	3.1	9.9
Pb [µg/g]	26-Mar-21	17:51	3.1	5.7	3.1	7.7
P [µg/g]	26-Mar-21	17:51	100	71	59	35
Sb [µg/g]	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	17:51	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	17:51	480	450	410	410
Sn [µg/g]	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	17:51	0.02	0.03	0.03	< 0.02
U [µg/g]	26-Mar-21	17:51	0.095	0.19	0.27	0.31
V [µg/g]	26-Mar-21	17:51	< 3	< 3	< 3	4
W [µg/g]	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [µg/g]	26-Mar-21	17:51	1.8	2.6	1.8	1.4
Zn [µg/g]	26-Mar-21	17:51	14	24	7.4	26

Fraction 3 Metals Bound to Fe and Mn Oxides

CHARTERED T CATHARINE ARNOLD Catharine Arnold, B.Sc., C.Chem

Project Specialist, Environment, Health & Safety

OnLine LIMS

Page 2 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

30-March-2021

Date Rec. :	08 March 2021
LR Report:	CA14205-MAR21
Reference:	P.O# 800003210A

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Sample Date & Time			04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	17:51	< 0.05	< 0.05	< 0.05	< 0.05
Al [µg/g]	26-Mar-21	17:51	77	120	150	630
As [µg/g]	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
Ba [µg/g]	26-Mar-21	17:51	1.5	5.5	1.1	2.4
Be [µg/g]	26-Mar-21	17:51	< 0.02	< 0.02	< 0.02	0.18
B [µg/g]	26-Mar-21	17:51	< 1	1	< 1	< 1
Bi [µg/g]	26-Mar-21	17:51	< 0.09	< 0.09	< 0.09	< 0.09
Ca [µg/g]	26-Mar-21	17:51	1800	3700	600	1300
Cd [µg/g]	26-Mar-21	17:51	0.03	0.03	0.03	0.25
Co [µg/g]	26-Mar-21	17:51	1.0	0.87	0.12	1.1
Cr [µg/g]	26-Mar-21	17:51	3.8	2.5	3.3	20
Cu [µg/g]	26-Mar-21	17:51	2.0	3.4	1.0	11
Fe [µg/g]	26-Mar-21	17:51	170	180	34	1100
K [µg/g]	26-Mar-21	17:51	12	22	24	45
Li [µg/g]	26-Mar-21	17:51	< 2	< 2	< 2	< 2

0002446266

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

LR Report :

CA14205-MAR21

Analysis	3: Analysis	4: Analysis	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
	Completed Date	Completed Time	JD-J4 JZ-JJ	30-31 42-43	36-22 20-27	56-22 25-50
Mg [µg/g]	26-Mar-21	17:51	1800	3400	240	490
Mn [µg/g]	26-Mar-21	17:51	5.1	7.5	3.5	11
Mo [µg/g]	26-Mar-21	17:51	0.2	0.1	0.3	1.0
Na [µg/g]	26-Mar-21	17:51	10	65	15	36
Ni [µg/g]	26-Mar-21	17:51	1.1	1.8	0.7	15
Pb [µg/g]	26-Mar-21	17:51	0.2	0.2	0.2	1.9
P [µg/g]	26-Mar-21	17:51	70	51	23	24
Sb [µg/g]	26-Mar-21	17:51	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	26-Mar-21	17:51	< 0.7	0.9	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	17:51	130	160	220	480
Sn [µg/g]	26-Mar-21	17:51	< 0.5	< 0.5	< 0.5	< 0.5
TI [µg/g]	26-Mar-21	17:51	0.03	0.04	< 0.02	0.02
U [µg/g]	26-Mar-21	17:51	0.097	0.086	0.12	0.48
V [µg/g]	26-Mar-21	17:51	< 3	< 3	< 3	8
W [µg/g]	26-Mar-21	17:51	< 0.04	< 0.04	< 0.04	< 0.04
Y [µg/g]	26-Mar-21	17:51	0.42	0.31	1.0	3.0
Zn [µg/g]	26-Mar-21	17:51	2.5	2.8	1.7	9.7

Fraction 4 Bound to Organic Material

CHARTERED E CATHARINE ARNOLD Catharine Arnold Chemist Chemist

Project Specialist, Environment, Health & Safety

OnLine LIMS

Page 2 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151 **Fraction 5 Residual metals**

Project : Hennepin MNA

30-March-2021

Date Rec. :	05 March 2021
LR Report:	CA14206-MAR21
Reference:	P.O# 800003210A

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Sample Date & Time			04-Mar-21 12:15	04-Mar-21 12:30	04-Mar-21 12:40	04-Mar-21 13:00
Ag [µg/g]	26-Mar-21	17:52	0.06	0.09	0.07	0.09
Al [µg/g]	26-Mar-21	17:52	22000	24000	14000	17000
As [µg/g]	26-Mar-21	17:52	1.9	2.7	3.9	6.6
Ba [µg/g]	26-Mar-21	17:52	190	170	130	130
Be [µg/g]	26-Mar-21	17:52	0.46	0.74	0.29	0.47
B [µg/g]	26-Mar-21	17:52	13	26	10	18
Bi [µg/g]	26-Mar-21	17:52	< 0.09	0.21	< 0.09	0.16
Ca [µg/g]	26-Mar-21	17:52	3000	4400	1800	1700
Cd [µg/g]	26-Mar-21	17:52	0.05	0.07	0.10	0.23
Co [µg/g]	26-Mar-21	17:52	3.9	5.4	2.9	3.9
Cr [µg/g]	26-Mar-21	17:52	37	39	54	98
Cu [µg/g]	26-Mar-21	17:52	5.7	9.6	7.4	9.7
Fe [µg/g]	26-Mar-21	17:52	8800	14000	8500	10000
K [µg/g]	26-Mar-21	17:52	9500	10000	6500	7500
Li [µg/g]	26-Mar-21	17:52	11	18	5	13

0002446270

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Fraction 5 Residual metals

Project :	Hennepin MNA
LR Report :	CA14206-MAR21

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: SB-34 32-33'	6: SB-51 42-43'	7: SB-22 26-27'	8: SB-22 29-30'
Mg [µg/g]	26-Mar-21	17:52	1900	2300	1100	1100
Mn [µg/g]	26-Mar-21	17:52	68	95	60	54
Mo [µg/g]	26-Mar-21	17:52	0.5	0.9	1.8	3.4
Na [µg/g]	26-Mar-21	17:52	4100	3200	3600	3900
Ni [µg/g]	26-Mar-21	17:52	8.2	14	7.4	11
Pb [µg/g]	26-Mar-21	17:52	5.2	6.5	5.3	17
P [µg/g]	26-Mar-21	17:52	130	210	160	200
Sb [µg/g]	26-Mar-21	17:52	< 0.8	< 0.8	< 0.8	1.0
Se [µg/g]	26-Mar-21	17:52	< 0.7	< 0.7	< 0.7	< 0.7
Si [µg/g]	26-Mar-21	17:52	8500	25000	34000	31000
Sn [µg/g]	26-Mar-21	17:52	2.9	3.6	2.9	4.3
TI [µg/g]	26-Mar-21	17:52	0.23	0.34	0.15	0.29
U [µg/g]	26-Mar-21	17:52	0.84	1.4	1.0	1.3
V [µg/g]	26-Mar-21	17:52	28	49	25	78
W [µg/g]	26-Mar-21	17:52	0.24	0.40	0.15	0.23
Y [µg/g]	26-Mar-21	17:52	4.1	4.1	3.3	3.1
Zn [µg/g]	26-Mar-21	17:52	24	39	33	62

Fraction 5 Residual metals

Catharine Arnold, B.Sc., C.Chem

Project Specialist, Environment, Health & Safety

OnLine LIMS

Page 2 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at Test method information available upon request. "Temperature Upon Receipt" in representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

ATTACHMENT 3 X-Ray Diffraction Laboratory Analytical Report

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for:	Environmental Services
Project Number/ LIMS No.	Custom XRD/MI4516-MAR21
Sample Receipt:	March 12, 2021
Sample Analysis:	March 25, 2021
Reporting Date:	April 8, 2021
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 35 kV, 40 mA Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°
Interpretations :	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.
Contents:	1) Method Summary 2) Quantitative XRD Results 3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

Haym Low

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: <u>http://palcan.scc.ca/SpecsSearch/GLSearchForm.do</u>.

nerals P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0 da Inc. Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met Member of the SGS Group (SGS SA)

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

SGS Minerals	P.O. Box 4300, 185 (Concession Street, Lal	kefield, Ontario,	Canada K0L 2H0
a division of SGS Canada Inc.	Tel: (705) 652-2000	Fax: (705) 652-6365	www.sgs.com	www.sgs.com/met
	Member of the SGS	Group (SGS SA)		

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

	SB-34 32-33'	SB-51 42-43'	SB-22 26-27'	SB-22 29-30'
Mineral/Compound	MAR4516-01	MAR4516-02	MAR4516-03	MAR4516-04
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	53.0	33.1	57.0	54.5
Microcline	5.1	9.8	5.2	5.2
Chlorite	3.4	6.8	1.9	2.7
Kaolinite	3.4	3.4	0.6	2.5
Muscovite	7.9	12.5	2.1	7.4
Calcite	11.1	20.9	7.2	3.3
Dolomite	2.6	5.0	14.4	11.4
Ankerite	6.0	1.3	2.9	2.8
Pyrite	0.2	0.3	-	-
Magnetite	0.4	0.2	0.5	0.4
Albite	7.1	6.6	7.3	9.8
Actinolite	-	-	0.8	-
TOTAL	100	100	100	100

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Microcline	KAISi ₃ O ₈
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂
Calcite	CaCO ₃
Dolomite	CaMg(CO ₃) ₂
Ankerite	CaFe(CO ₃) ₂
Pyrite	FeS ₂
Magnetite	Fe ₃ O ₄
Albite	NaAlSi ₃ O ₈
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂

SB-34 32-33'

SB-22 26-27'

SB-22 29-30'

SGS Minerals Services, P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0

ATTACHMENT C CORRECTIVE MEASURES ASSESSMENT EXTENSION REQUEST AND IEPA APPROVAL LETTER

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 (217) 782-3397 JB PRITZKER, GOVERNOR JOHN J. KIM, DIRECTOR

217-782-1020

December 12, 2023

Dianna Tickner Electric Energy, Inc. 1500 Eastport Plaza drive Collinsville, Illinois 62234

Re: Hennepin Old West Ash Pond and Old West Polishing Pond (W15501000002-01 and W15501000002-03) Corrective Measures Assessment Schedule Extension Request

Dear Mrs. Tickner:

The purpose of this correspondence is to notify you that the Illinois Environmental Protection Agency (Illinois EPA) approves of the extension request submitted on December 11, 2023, for completing the Corrective Measures Assessment (CMA).

If you have any questions, please contact: **Heather Mullenax** Illinois EPA, Bureau of Water, PWS #13, P.O. Box 19276, Springfield, Illinois 62794-9276. If you have any questions concerning the investigation described above, please call 217-782-1020.

Sincerely,

die

Michael Summers, P.G. Manager, Groundwater Section Division of Public Water Supplies Bureau of Water

cc: Heather Mullenax

Keegan Macdonna Phil Morris Records Files 06M – W15501000002

2125 S. First Street, Champaign, IL 61820 (217) 278-5800 1101 Eastport Plaza Dr., Suite 100, Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 595 S. State Street, Elgin, IL 60123 (847) 608-3131 2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 4302 N. Maïn Street, Rockford, IL 61103 (815) 987-7760

Dynegy Midwest Generation, LLC 13498 E 800th St Hennepin, IL 61327

December 11, 2023

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276

Re: Hennepin Old West Ash Pond and Old West Polishing Pond (IEPA IDs: W15501000002-01 and W1550100002-03), Corrective Measures Assessment Schedule Extension Demonstration

Dear Mr. LeCrone:

In accordance with 35 I.A.C. § 845.660(a)(2), Dynegy Midwest Generation, LLC (DMG) is submitting a schedule extension demonstration for completing the Corrective Measures Assessment (CMA) for the Old West Ash Pond (OWAP) and the Old West Polishing Pond (OWPP), which are collectively known as the West Ash Pond System (IEPA ID: W1550100002-01 [OWAP] and W1550100002-03 [OWPP]), at the Hennepin Power Plant, as enclosed.

Sincerely,

Dianna Sickner

Dianna Tickner, P.E., PMP Senior Director, Decommissioning & Demolition

Enclosures

INTRODUCTION AND BACKGROUND

Exceedances of the groundwater protection standards (GWPS) listed in Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.600 have been detected at the West Ash Pond System (WAPS) at the Hennepin Power Plant. The WAPS is comprised of the Old West Ash Pond (OWAP) and the Old West Polishing Pond (OWPP), and has Illinois Environmental Protection Agency [IEPA] Identifications [IDs] of W1550100002-01 for the OWAP and W1550100002-03 for the OWPP. The GWPS exceedances are documented in the 2023 Quarter 2 groundwater monitoring report that was prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) and submitted to IEPA on September 11, 2023 [1].

In accordance with 35 I.A.C. § 845.660, Dynegy Midwest Generation, LLC (DMG) initiated a Corrective Measures Assessment (CMA) on December 10, 2023, which was within 90 days of the exceedance detection. Upon reviewing site-specific conditions, circumstances, and information gathered to-date, DMG has determined, in accordance with 35 I.A.C. § 845.660(a)(2), that an additional 60 days will be required to complete the CMA. This extension of the CMA deadline would result in the CMA for the WAPS being submitted to IEPA on or before May 8, 2024.

DEMONSTRATION

As discussed below, there are four site-specific conditions or circumstances at the WAPS that justify the need for a 60-day extension of the default CMA deadline.

Circumstance 1: Ongoing Fieldwork and Additional Data Collection

The reliability of monitored natural attenuation (MNA) to attain groundwater protection standards (GWPS) is currently under evaluation. DMG is in the process of evaluating the results of additional recent fieldwork and data collection associated with the evaluation of MNA as a corrective measure for the WAPS. The fieldwork included new soil borings, collection of soil samples, and geochemical testing. The results of this fieldwork and data collection will be utilized to evaluate the reliability, including the potential for reversibility, of MNA relative to other types of corrective measures.

Circumstance 2: Potential Conflicts with Completed Closure and Adjacent Wetlands and Floodplains The evaluation of performance and reliability of corrective measures for the WAPS will be complicated by physical challenges and constraints around effectively implementing corrective measures at the site. The WAPS, which was closed under a consolidate-and-cap approach in 2020 ([2], [3]), in accordance with a closure plan [4] that was found by IEPA to "*be an adequate corrective action*" [5], has several constraints and corresponding physical challenges, including, but not limited to:

- The closed-in-place WAPS includes an alternative final cover system with a low-permeability geomembrane barrier layer, protective cover soil, a vegetative soil layer, and well-established vegetation.
 - The closure also includes other engineered features and structures such as a stormwater management system, erosion protection, and a sheet pile wall ([2], [3], [4]).
- Areas identified by the Federal Emergency Management Agency (FEMA) as the 100-year floodplain of the Illinois River are immediately adjacent to the entirety of the north, west, and south sides of the WAPS [6].
 - These areas are routinely impacted by normal high-water events in the Illinois River and may be inundated for days to weeks at a time.
- Areas identified by the U.S. Fish and Wildlife Service's mapping tool as potential wetlands, including freshwater forested/shrub, freshwater emergent, and lake wetlands, are immediately adjacent to on the entirety of the north and portions of the south sides of the WAPS [7].

These factors will require substantial effort to evaluate the physical location and dimensions of any proposed corrective action which limit impacts to the completed closure and final cover system, while also minimizing impacts to environmentally sensitive wetlands and floodplains.

Circumstance 3: Future Solar Development

The ease of implementation and time required to begin and complete corrective action at the WAPS may be affected by potential future solar development at the site. DMG is in the planning stages for potential future development of a solar facility over the closed-in-place WAPS which could provide renewable, low-carbon energy to Illinois while repurposing the WAPS into productive land use. Additional time is required to evaluate potential conflicts between the future solar development that is being considered and potential corrective measures.

Circumstance 4: Depths, High Hydraulic Conductivity, and Boulders and Cobbles within the Uppermost Aquifer The complexity of implementing corrective action will be affected by the high-permeability foundation soils, their relatively large depths, and difficult subsurface conditions. The Uppermost Aquifer (UA) at the WAPS consists of the pervious units of the Cahokia Alluvium and highly pervious Henry Formation. The UA extends to approximately 90 ft below the WAPS, with a thickness ranging from approximately 45 to 75 feet [8]. Based on field permeability tests, hydraulic conductivity of the UA ranges from $1.2x10^{-2}$ cm/sec for the most permeable gravel deposits of the Henry Formation to $1.3x10^{-4}$ cm/sec for the least permeable silty deposits of the Cahokia Alluvium. Additionally, the UA has difficult subsurface conditions consisting of gravel, cobbles, and boulders that become more prevalent with depth throughout the unit, and may make the implementation of corrective action challenging. Additional time will be required for the CMA to address these site-specific conditions.

REFERENCES

- [1] Ramboll Americas Engineering Solutions, Inc., "35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 2, West Ash Pond System, Hennepin Power Plant, Hennepin, Illinois," September 11, 2023.
- [2] Dynegy Midwest Generation, LLC, "Hennepin Power Station; Old West Polishing Pond, Notification of Completion of Closure," Luminant, December 17, 2020.
- [3] Dynegy Midwest Generation, LLC, "Hennepin Power Station; Old West Ash Pond, Ash Pond No. 2, Notification of Completion of Closure," Luminant, December 17, 2020.
- [4] Geosyntec Consultants, "Closure and Post-Closure Care Plan, Old West Ash Pond, Old West Polishing Pond at Dynegy Midwest Generation, LLC Hennepin Power Station," December 20, 2017.
- [5] W. E. Buscher, "Letter to Phil Morris, Senior Director, Environmental Compliance, Luminant," Illinois Environmental Protection Agency, June 19, 2018.
- [6] Federal Emergency Management Agency, "National Flood Hazard Layer," U.S. Department of Homeland Security, 26 August 2021. [Online]. Available: https://www.fema.gov/flood-maps/national-flood-hazard-layer.
- [7] U.S. Fish and Wildlife Service, "National Wetlands Inventory, Surface Waters and Wetlands," [Online]. Available: https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/.
- [8] Natural Resource Technology, "Hydrogeologic Site Characterization Report, Hennepin West Ash Pond System, Hennepin, Illinois," December 20, 2017.

CERTIFICATION STATEMENT

CCR Unit: Dynegy Midwest Generation, LLC; Hennepin Power Plant, West Ash Pond System IEPA ID: W1550100002-01 and W1550100002-02

I, Lucas P. Carr, being a Registered Professional Engineer in good standing with the state of Illinois, do herby certify, to the best of my knowledge, information, and belief that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above referenced CCR unit, that the 60-day extension demonstration for the Corrective Measures Assessment has been prepared in accordance with 35 I.A.C. § 845.600(a)(2) and is accurate.

Lucas P. Carr, P.E. Senior Managing Consultant

12/11/2023 Date

ATTACHMENT D COMPARISON OF STATISTICAL RESULTS TO BACKGROUND

- ATTACHMENT C FROM THE QUARTER 2, 2023 GROUNDWATER MONITORING DATA AND DETECTED EXCEEDANCES REPORT (RAMBOLL, 2023a)
- ATTACHMENT C FROM THE QUARTER 3, 2023 GROUNDWATER MONITORING DATA AND DETECTED EXCEEDANCES REPORT (RAMBOLL, 2023b)

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
21/21R	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.001	0.001
21/21R	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	27	0	CB around T-S line	0.0198	0.001
21/21R	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	27	0	CB around linear reg	0.32	0.156
21/21R	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.0005	0.001
21/21R	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	28	0	CB around T-S line	2.22	0.205
21/21R	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.002	0.001
21/21R	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	97.9	108
21/21R	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	27	59	CB around T-S line	0.0015	0.0013
21/21R	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	27	76	CB around T-S line	0.001	0.0017
21/21R	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	28	6	CI around median	0.14	0.17
21/21R	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	27	55	CB around T-S line	0.001	0.001
21/21R	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	27	0	CB around linear reg	0.0195	0.014
21/21R	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	27	97	CI around median	0.0002	0.0002
21/21R	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	27	4	CI around mean	0.00656	0.002
21/21R	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	30	0	CI around mean	7.3/7.5	6.7/7.4
21/21R	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	20	0	CI around mean	0.805	2.6
21/21R	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.001	0.0011
21/21R	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	55.9	117
21/21R	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.002	0.001
21/21R	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	28	0	CB around T-S line	607	830
22	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	30	91	CI around median	0.001	0.001
22	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	34	72	CI around median	0.001	0.001
22	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	30	0	CI around median	0.0635	0.156
22	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0005	0.001
22	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	35	0	CB around T-S line	3.33	0.205
22	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	30	6	CB around T-S line	0.00587	0.001
22	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	37	0	CB around T-S line	87.2	108

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
22	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.005	0.0013
22	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	30	6	CB around T-S line	0.00215	0.0017
22	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	30	3	CI around median	0.15	0.17
22	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0075	0.001
22	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	34	0	CB around T-S line	0.0395	0.014
22	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0002	0.0002
22	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	34	0	CB around T-S line	0.082	0.002
22	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	33	0	CB around T-S line	7.4/7.5	6.7/7.4
22	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	21	0	CI around mean	0.344	2.6
22	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	30	6	CB around linear reg	0.0161	0.0011
22	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	37	0	CB around linear reg	110	117
22	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	30	94	CB around T-S line	0.002	0.001
22	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	37	0	CB around linear reg	593	830
22D	UA	E001	Antimony, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.001
22D	UA	E001	Arsenic, total	mg/L	09/17/19 - 05/31/23	14	7	CI around median	0.0012	0.001
22D	UA	E001	Barium, total	mg/L	09/17/19 - 05/31/23	14	0	CB around T-S line	0.0606	0.156
22D	UA	E001	Beryllium, total	mg/L	09/17/19 - 05/31/23	13	100	All ND - Last	0.0005	0.001
22D	UA	E001	Boron, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	1.85	0.205
22D	UA	E001	Cadmium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.002	0.001
22D	UA	E001	Chloride, total	mg/L	09/17/19 - 05/31/23	14	0	CB around linear reg	106	108
22D	UA	E001	Chromium, total	mg/L	09/17/19 - 05/31/23	14	86	CI around median	0.0015	0.0013
22D	UA	E001	Cobalt, total	mg/L	09/17/19 - 05/31/23	14	93	CI around median	0.001	0.0017
22D	UA	E001	Fluoride, total	mg/L	09/17/19 - 05/31/23	14	7	CI around median	0.11	0.17
22D	UA	E001	Lead, total	mg/L	09/17/19 - 05/31/23	14	93	CI around median	0.001	0.001
22D	UA	E001	Lithium, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	0.0144	0.014
22D	UA	E001	Mercury, total	mg/L	12/11/19 - 05/31/23	13	100	All ND - Last	0.0002	0.0002
22D	UA	E001	Molybdenum, total	mg/L	09/17/19 - 05/31/23	14	7	CI around mean	0.00654	0.002

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
22D	UA	E001	pH (field)	SU	09/17/19 - 05/31/23	17	0	CI around mean	7.2/7.3	6.7/7.4
22D	UA	E001	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 05/31/23	11	0	CI around mean	0.518	2.6
22D	UA	E001	Selenium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.0011
22D	UA	E001	Sulfate, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	103	117
22D	UA	E001	Thallium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.002	0.001
22D	UA	E001	Total Dissolved Solids	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	595	830
23	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.001	0.001
23	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	34	94	CB around T-S line	0.001	0.001
23	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	30	0	CB around T-S line	0.0365	0.156
23	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0005	0.001
23	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	35	0	CB around linear reg	8.74	0.205
23	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.002	0.001
23	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	37	1	CB around T-S line	50.6	108
23	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.005	0.0013
23	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.001	0.0017
23	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	30	3	CI around median	0.15	0.17
23	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.0075	0.001
23	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	34	6	CI around median	0.0048	0.014
23	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0002	0.0002
23	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	34	0	CI around median	0.0146	0.002
23	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	32	0	CI around mean	7.4/7.5	6.7/7.4
23	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	21	0	CI around mean	0.253	2.6
23	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.001	0.0011
23	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	37	0	CI around mean	422	117
23	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	30	100	All ND - Last	0.002	0.001
23	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	37	0	CI around mean	883	830
24/51	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.001	0.001

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
24/51	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	32	0	CI around mean	0.0204	0.001
24/51	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	28	0	CB around linear reg	0.112	0.156
24/51	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0005	0.001
24/51	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	33	0	CB around linear reg	1.52	0.205
24/51	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.002	0.001
24/51	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	35	0	CB around linear reg	108	108
24/51	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	28	77	CB around T-S line	0.0015	0.0013
24/51	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	28	73	CI around median	0.001	0.0017
24/51	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	28	3	CB around T-S line	0.114	0.17
24/51	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	28	70	CI around median	0.001	0.001
24/51	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	32	0	CB around T-S line	0.0224	0.014
24/51	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	27	100	All ND - Last	0.0002	0.0002
24/51	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	32	3	CI around mean	0.00992	0.002
24/51	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	30	0	CB around linear reg	7.1/7.4	6.7/7.4
24/51	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	20	0	CB around linear reg	1.12	2.6
24/51	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.001	0.0011
24/51	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	35	0	CB around linear reg	86	117
24/51	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.002	0.001
24/51	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	35	0	CI around mean	616	830
27	UA	E001	Antimony, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.001	0.001
27	UA	E001	Arsenic, total	mg/L	09/12/18 - 05/31/23	17	68	CI around median	0.001	0.001
27	UA	E001	Barium, total	mg/L	09/12/18 - 05/31/23	17	0	CI around mean	0.0835	0.156
27	UA	E001	Beryllium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.0005	0.001
27	UA	E001	Boron, total	mg/L	09/12/18 - 05/31/23	17	0	CB around linear reg	1.38	0.205
27	UA	E001	Cadmium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.002	0.001
27	UA	E001	Chloride, total	mg/L	03/08/16 - 05/31/23	22	0	CB around linear reg	105	108
27	UA	E001	Chromium, total	mg/L	09/12/18 - 05/31/23	17	79	CI around median	0.0015	0.0013

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
27	UA	E001	Cobalt, total	mg/L	09/12/18 - 05/31/23	17	10	CI around mean	0.00185	0.0017
27	UA	E001	Fluoride, total	mg/L	09/12/18 - 05/31/23	17	0	CI around median	0.12	0.17
27	UA	E001	Lead, total	mg/L	09/12/18 - 05/31/23	17	58	CI around median	0.001	0.001
27	UA	E001	Lithium, total	mg/L	09/12/18 - 05/31/23	17	0	CI around mean	0.0212	0.014
27	UA	E001	Mercury, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.0002	0.0002
27	UA	E001	Molybdenum, total	mg/L	09/12/18 - 05/31/23	17	6	CI around mean	0.00434	0.002
27	UA	E001	pH (field)	SU	03/08/16 - 05/31/23	22	0	CB around linear reg	7.0/7.2	6.7/7.4
27	UA	E001	Radium 226 + Radium 228, total	pCi/L	09/12/18 - 05/31/23	11	0	CI around geomean	0.189	2.6
27	UA	E001	Selenium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.001	0.0011
27	UA	E001	Sulfate, total	mg/L	03/08/16 - 05/31/23	22	0	CI around geomean	121	117
27	UA	E001	Thallium, total	mg/L	09/12/18 - 05/31/23	17	100	All ND - Last	0.002	0.001
27	UA	E001	Total Dissolved Solids	mg/L	03/08/16 - 05/31/23	22	0	CI around median	638	830
35	UA	E001	Antimony, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.001	0.001
35	UA	E001	Arsenic, total	mg/L	12/09/15 - 05/31/23	29	79	CI around median	0.001	0.001
35	UA	E001	Barium, total	mg/L	12/09/15 - 05/31/23	29	0	CI around geomean	0.0394	0.156
35	UA	E001	Beryllium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.0005	0.001
35	UA	E001	Boron, total	mg/L	12/09/15 - 05/31/23	30	0	CB around linear reg	12.4	0.205
35	UA	E001	Cadmium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.002	0.001
35	UA	E001	Chloride, total	mg/L	12/09/15 - 05/31/23	30	0	CI around mean	38.5	108
35	UA	E001	Chromium, total	mg/L	12/09/15 - 05/31/23	29	97	CB around T-S line	0.0015	0.0013
35	UA	E001	Cobalt, total	mg/L	12/09/15 - 05/31/23	29	45	CB around T-S line	0.001	0.0017
35	UA	E001	Fluoride, total	mg/L	12/09/15 - 05/31/23	30	0	CI around mean	0.175	0.17
35	UA	E001	Lead, total	mg/L	12/09/15 - 05/31/23	29	90	CI around median	0.001	0.001
35	UA	E001	Lithium, total	mg/L	12/09/15 - 05/31/23	29	0	CI around mean	0.0245	0.014
35	UA	E001	Mercury, total	mg/L	12/09/15 - 05/31/23	28	100	All ND - Last	0.0002	0.0002
35	UA	E001	Molybdenum, total	mg/L	12/09/15 - 05/31/23	29	0	CI around mean	0.0664	0.002
35	UA	E001	pH (field)	SU	12/09/15 - 05/31/23	30	0	CB around linear reg	6.7/7.0	6.7/7.4

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
35	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/09/15 - 05/31/23	22	0	CI around median	0.25	2.6
35	UA	E001	Selenium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.001	0.0011
35	UA	E001	Sulfate, total	mg/L	12/09/15 - 05/31/23	30	0	CB around linear reg	618	117
35	UA	E001	Thallium, total	mg/L	12/09/15 - 05/31/23	29	100	All ND - Last	0.002	0.001
35	UA	E001	Total Dissolved Solids	mg/L	12/09/15 - 05/31/23	30	0	CB around linear reg	1,200	830
49	UA	E001	Antimony, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.001	0.001
49	UA	E001	Arsenic, total	mg/L	12/10/15 - 05/31/23	29	97	CI around median	0.001	0.001
49	UA	E001	Barium, total	mg/L	12/10/15 - 05/31/23	29	0	CB around linear reg	0.0617	0.156
49	UA	E001	Beryllium, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.0005	0.001
49	UA	E001	Boron, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	0.467	0.205
49	UA	E001	Cadmium, total	mg/L	12/10/15 - 05/31/23	29	31	CB around linear reg	0.00165	0.001
49	UA	E001	Chloride, total	mg/L	12/10/15 - 05/31/23	30	0	CI around median	100	108
49	UA	E001	Chromium, total	mg/L	12/10/15 - 05/31/23	29	97	CB around T-S line	0.0015	0.0013
49	UA	E001	Cobalt, total	mg/L	12/10/15 - 05/31/23	29	0	CI around mean	0.00456	0.0017
49	UA	E001	Fluoride, total	mg/L	12/10/15 - 05/31/23	30	0	CI around mean	0.148	0.17
49	UA	E001	Lead, total	mg/L	12/10/15 - 05/31/23	29	93	CB around T-S line	0.001	0.001
49	UA	E001	Lithium, total	mg/L	12/10/15 - 05/31/23	29	0	CI around mean	0.024	0.014
49	UA	E001	Mercury, total	mg/L	12/10/15 - 05/31/23	28	100	All ND - Last	0.0002	0.0002
49	UA	E001	Molybdenum, total	mg/L	12/10/15 - 05/31/23	29	0	CB around linear reg	0.0233	0.002
49	UA	E001	pH (field)	SU	12/10/15 - 05/31/23	31	0	CB around linear reg	6.9/7.1	6.7/7.4
49	UA	E001	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 05/31/23	22	0	CI around mean	0.29	2.6
49	UA	E001	Selenium, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.001	0.0011
49	UA	E001	Sulfate, total	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	70.1	117
49	UA	E001	Thallium, total	mg/L	12/10/15 - 05/31/23	29	100	All ND - Last	0.002	0.001
49	UA	E001	Total Dissolved Solids	mg/L	12/10/15 - 05/31/23	30	0	CB around linear reg	575	830
50	UA	E001	Antimony, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.001
50	UA	E001	Arsenic, total	mg/L	09/17/19 - 05/31/23	14	93	CI around median	0.001	0.001

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
50	UA	E001	Barium, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	0.0899	0.156
50	UA	E001	Beryllium, total	mg/L	09/17/19 - 05/31/23	13	100	All ND - Last	0.0005	0.001
50	UA	E001	Boron, total	mg/L	09/17/19 - 05/31/23	14	0	CI around median	0.69	0.205
50	UA	E001	Cadmium, total	mg/L	09/17/19 - 05/31/23	14	7	CI around median	0.0011	0.001
50	UA	E001	Chloride, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	90.1	108
50	UA	E001	Chromium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.005	0.0013
50	UA	E001	Cobalt, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	0.00441	0.0017
50	UA	E001	Fluoride, total	mg/L	09/17/19 - 05/31/23	14	21	CI around mean	0.0987	0.17
50	UA	E001	Lead, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.0075	0.001
50	UA	E001	Lithium, total	mg/L	09/17/19 - 05/31/23	14	0	CI around median	0.0197	0.014
50	UA	E001	Mercury, total	mg/L	12/11/19 - 05/31/23	13	100	All ND - Last	0.0002	0.0002
50	UA	E001	Molybdenum, total	mg/L	09/17/19 - 05/31/23	14	0	CB around T-S line	0.0301	0.002
50	UA	E001	pH (field)	SU	09/17/19 - 05/31/23	17	0	CI around median	7.2/7.4	6.7/7.4
50	UA	E001	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 05/31/23	10	0	CI around mean	0.498	2.6
50	UA	E001	Selenium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.001	0.0011
50	UA	E001	Sulfate, total	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	85	117
50	UA	E001	Thallium, total	mg/L	09/17/19 - 05/31/23	14	100	All ND - Last	0.002	0.001
50	UA	E001	Total Dissolved Solids	mg/L	09/17/19 - 05/31/23	14	0	CI around mean	606	830

ATTACHMENT C.

COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 2, 2023 845 QUARTERLY REPORT

HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Notes:

Lower Confidence Limit (LCL) or Upper Confidence Limit (UCL) exceeded the statistical background value HSU = hydrostratigraphic unit:

UA = Uppermost Aquifer

mg/L = milligrams per liter

ND = non-detect

pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around T-S line = Confidence band around Thiel-Sen line

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with Statistical Analysis Plan using constituent concentrations observed at monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits of the background determination

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
21/21R	UA	E002	Antimony, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.003	0.001
21/21R	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/22/23	28	0	CB around T-S line	0.0194	0.001
21/21R	UA	E002	Barium, total	mg/L	12/10/15 - 08/22/23	28	0	CB around linear reg	0.318	0.156
21/21R	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.001	0.001
21/21R	UA	E002	Boron, total	mg/L	12/10/15 - 08/22/23	29	0	CB around T-S line	1.96	0.205
21/21R	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.0005	0.001
21/21R	UA	E002	Chloride, total	mg/L	12/10/15 - 08/22/23	31	0	CB around linear reg	98.6	108
21/21R	UA	E002	Chromium, total	mg/L	12/10/15 - 08/22/23	28	60	CB around T-S line	0.0015	0.00130
21/21R	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/22/23	28	73	CB around T-S line	0.001	0.00170
21/21R	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/22/23	29	9	CI around median	0.14	0.170
21/21R	UA	E002	Lead, total	mg/L	12/10/15 - 08/22/23	28	53	CB around T-S line	0.00111	0.001
21/21R	UA	E002	Lithium, total	mg/L	12/10/15 - 08/22/23	28	0	CB around linear reg	0.0203	0.0140
21/21R	UA	E002	Mercury, total	mg/L	12/10/15 - 08/22/23	28	97	CI around median	0.0002	0.0002
21/21R	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/22/23	28	4	CI around mean	0.00666	0.00200
21/21R	UA	E002	pH (field)	SU	12/10/15 - 08/22/23	31	0	CI around mean	7.3/7.5	6.7/7.4
21/21R	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/22/23	21	0	CI around mean	0.807	2.60
21/21R	UA	E002	Selenium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.0025	0.00110
21/21R	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/22/23	31	0	CB around linear reg	56.5	117
21/21R	UA	E002	Thallium, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.002	0.001
21/21R	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/22/23	29	0	CB around T-S line	622	830
22	UA	E002	Antimony, total	mg/L	12/10/15 - 08/25/23	31	91	CI around median	0.001	0.001
22	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/25/23	35	73	CI around median	0.001	0.001
22	UA	E002	Barium, total	mg/L	12/10/15 - 08/25/23	31	0	CI around median	0.0635	0.156
22	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/25/23	31	100	All ND - Last	0.001	0.001
22	UA	E002	Boron, total	mg/L	12/10/15 - 08/25/23	36	0	CB around T-S line	3.15	0.205
22	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/25/23	31	9	CB around T-S line	0.00567	0.001
22	UA	E002	Chloride, total	mg/L	12/10/15 - 08/25/23	38	0	CB around T-S line	89.1	108

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
22	UA	E002	Chromium, total	mg/L	12/10/15 - 08/25/23	31	100	All ND - Last	0.005	0.00130
22	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/25/23	31	9	CI around mean	0.00191	0.00170
22	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/25/23	31	6	CI around median	0.15	0.170
22	UA	E002	Lead, total	mg/L	12/10/15 - 08/25/23	31	100	All ND - Last	0.0005	0.001
22	UA	E002	Lithium, total	mg/L	12/10/15 - 08/25/23	35	0	CB around T-S line	0.0405	0.0140
22	UA	E002	Mercury, total	mg/L	12/10/15 - 08/25/23	29	100	All ND - Last	0.0002	0.0002
22	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/25/23	35	0	CB around T-S line	0.0754	0.00200
22	UA	E002	pH (field)	SU	12/10/15 - 08/25/23	34	0	CI around mean	7.5/7.7	6.7/7.4
22	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/25/23	22	0	CI around mean	0.352	2.60
22	UA	E002	Selenium, total	mg/L	12/10/15 - 08/25/23	31	6	CB around linear reg	0.0158	0.00110
22	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/25/23	38	0	CB around linear reg	106	117
22	UA	E002	Thallium, total	mg/L	12/10/15 - 08/25/23	31	94	CB around T-S line	0.002	0.001
22	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/25/23	38	0	CB around linear reg	591	830
22D	UA	E002	Antimony, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.003	0.001
22D	UA	E002	Arsenic, total	mg/L	09/17/19 - 08/22/23	15	7	CI around median	0.0012	0.001
22D	UA	E002	Barium, total	mg/L	09/17/19 - 08/22/23	15	0	CB around T-S line	0.0653	0.156
22D	UA	E002	Beryllium, total	mg/L	09/17/19 - 08/22/23	14	100	All ND - Last	0.001	0.001
22D	UA	E002	Boron, total	mg/L	09/17/19 - 08/22/23	15	0	CB around linear reg	1.22	0.205
22D	UA	E002	Cadmium, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.0005	0.001
22D	UA	E002	Chloride, total	mg/L	09/17/19 - 08/22/23	15	0	CB around linear reg	101	108
22D	UA	E002	Chromium, total	mg/L	09/17/19 - 08/22/23	15	87	CI around median	0.0015	0.00130
22D	UA	E002	Cobalt, total	mg/L	09/17/19 - 08/22/23	15	93	CI around median	0.001	0.00170
22D	UA	E002	Fluoride, total	mg/L	09/17/19 - 08/22/23	15	13	CI around median	0.11	0.170
22D	UA	E002	Lead, total	mg/L	09/17/19 - 08/22/23	15	93	CI around median	0.001	0.001
22D	UA	E002	Lithium, total	mg/L	09/17/19 - 08/22/23	15	0	CI around mean	0.0145	0.0140
22D	UA	E002	Mercury, total	mg/L	12/11/19 - 08/22/23	14	100	All ND - Last	0.0002	0.0002
22D	UA	E002	Molybdenum, total	mg/L	09/17/19 - 08/22/23	15	7	CI around mean	0.00655	0.00200

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
22D	UA	E002	pH (field)	SU	09/17/19 - 08/22/23	18	0	CI around mean	7.2/7.3	6.7/7.4
22D	UA	E002	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 08/22/23	12	0	CI around mean	0.589	2.60
22D	UA	E002	Selenium, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.0025	0.00110
22D	UA	E002	Sulfate, total	mg/L	09/17/19 - 08/22/23	15	0	CI around mean	102	117
22D	UA	E002	Thallium, total	mg/L	09/17/19 - 08/22/23	15	100	All ND - Last	0.002	0.001
22D	UA	E002	Total Dissolved Solids	mg/L	09/17/19 - 08/22/23	15	0	CI around mean	599	830
23	UA	E002	Antimony, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.003	0.001
23	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/22/23	35	95	CB around T-S line	0.001	0.001
23	UA	E002	Barium, total	mg/L	12/10/15 - 08/22/23	31	0	CB around T-S line	0.0352	0.156
23	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.001	0.001
23	UA	E002	Boron, total	mg/L	12/10/15 - 08/22/23	36	0	CB around T-S line	8.3	0.205
23	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.0005	0.001
23	UA	E002	Chloride, total	mg/L	12/10/15 - 08/22/23	38	1	CB around T-S line	51.7	108
23	UA	E002	Chromium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.005	0.00130
23	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.001	0.00170
23	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/22/23	31	6	CI around median	0.15	0.170
23	UA	E002	Lead, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.0005	0.001
23	UA	E002	Lithium, total	mg/L	12/10/15 - 08/22/23	35	6	CI around mean	0.00458	0.0140
23	UA	E002	Mercury, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.0002	0.0002
23	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/22/23	35	0	CI around median	0.0146	0.00200
23	UA	E002	pH (field)	SU	12/10/15 - 08/22/23	33	0	CI around mean	7.4/7.5	6.7/7.4
23	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/22/23	22	0	CI around mean	0.27	2.60
23	UA	E002	Selenium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.0025	0.00110
23	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/22/23	38	0	CI around mean	423	117
23	UA	E002	Thallium, total	mg/L	12/10/15 - 08/22/23	31	100	All ND - Last	0.002	0.001
23	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/22/23	38	0	CI around mean	885	830
24/51	UA	E002	Antimony, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.003	0.001

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
24/51	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/22/23	33	0	CI around mean	0.0204	0.001
24/51	UA	E002	Barium, total	mg/L	12/10/15 - 08/22/23	29	0	CB around linear reg	0.11	0.156
24/51	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.001	0.001
24/51	UA	E002	Boron, total	mg/L	12/10/15 - 08/22/23	34	0	CB around linear reg	1.43	0.205
24/51	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.0005	0.001
24/51	UA	E002	Chloride, total	mg/L	12/10/15 - 08/22/23	36	0	CB around linear reg	107	108
24/51	UA	E002	Chromium, total	mg/L	12/10/15 - 08/22/23	29	77	CB around T-S line	0.0015	0.00130
24/51	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/22/23	29	74	CI around median	0.001	0.00170
24/51	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/22/23	29	6	CI around median	0.14	0.170
24/51	UA	E002	Lead, total	mg/L	12/10/15 - 08/22/23	29	68	CI around median	0.001	0.001
24/51	UA	E002	Lithium, total	mg/L	12/10/15 - 08/22/23	33	0	CB around T-S line	0.0229	0.0140
24/51	UA	E002	Mercury, total	mg/L	12/10/15 - 08/22/23	28	100	All ND - Last	0.0002	0.0002
24/51	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/22/23	33	3	CI around mean	0.00988	0.00200
24/51	UA	E002	pH (field)	SU	12/10/15 - 08/22/23	31	0	CB around linear reg	7.1/7.4	6.7/7.4
24/51	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/22/23	21	0	CB around linear reg	1.07	2.60
24/51	UA	E002	Selenium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.0025	0.00110
24/51	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/22/23	36	0	CB around linear reg	84.4	117
24/51	UA	E002	Thallium, total	mg/L	12/10/15 - 08/22/23	29	100	All ND - Last	0.002	0.001
24/51	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/22/23	36	0	CI around mean	618	830
27	UA	E002	Antimony, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.003	0.001
27	UA	E002	Arsenic, total	mg/L	09/12/18 - 08/24/23	18	65	CI around median	0.001	0.001
27	UA	E002	Barium, total	mg/L	09/12/18 - 08/24/23	18	0	CI around geomean	0.0837	0.156
27	UA	E002	Beryllium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.001	0.001
27	UA	E002	Boron, total	mg/L	09/12/18 - 08/24/23	18	0	CB around linear reg	1.36	0.205
27	UA	E002	Cadmium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.0005	0.001
27	UA	E002	Chloride, total	mg/L	03/08/16 - 08/24/23	23	0	CB around linear reg	102	108
27	UA	E002	Chromium, total	mg/L	09/12/18 - 08/24/23	18	80	CI around median	0.0015	0.00130

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
27	UA	E002	Cobalt, total	mg/L	09/12/18 - 08/24/23	18	10	CI around mean	0.00189	0.00170
27	UA	E002	Fluoride, total	mg/L	09/12/18 - 08/24/23	18	4	CI around median	0.12	0.170
27	UA	E002	Lead, total	mg/L	09/12/18 - 08/24/23	18	60	CI around median	0.001	0.001
27	UA	E002	Lithium, total	mg/L	09/12/18 - 08/24/23	18	0	CI around mean	0.0213	0.0140
27	UA	E002	Mercury, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.0002	0.0002
27	UA	E002	Molybdenum, total	mg/L	09/12/18 - 08/24/23	18	11	CI around mean	0.00413	0.00200
27	UA	E002	pH (field)	SU	03/08/16 - 08/24/23	23	0	CI around mean	7.1/7.2	6.7/7.4
27	UA	E002	Radium 226 + Radium 228, total	pCi/L	09/12/18 - 08/24/23	12	0	CI around geomean	0.211	2.60
27	UA	E002	Selenium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.0025	0.00110
27	UA	E002	Sulfate, total	mg/L	03/08/16 - 08/24/23	23	0	CB around linear reg	87.9	117
27	UA	E002	Thallium, total	mg/L	09/12/18 - 08/24/23	18	100	All ND - Last	0.002	0.001
27	UA	E002	Total Dissolved Solids	mg/L	03/08/16 - 08/24/23	23	0	CI around median	638	830
35	UA	E002	Antimony, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.003	0.001
35	UA	E002	Arsenic, total	mg/L	12/09/15 - 08/24/23	30	80	CI around median	0.001	0.001
35	UA	E002	Barium, total	mg/L	12/09/15 - 08/24/23	30	0	CI around geomean	0.0396	0.156
35	UA	E002	Beryllium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.001	0.001
35	UA	E002	Boron, total	mg/L	12/09/15 - 08/24/23	31	0	CB around linear reg	12.3	0.205
35	UA	E002	Cadmium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.0005	0.001
35	UA	E002	Chloride, total	mg/L	12/09/15 - 08/24/23	31	0	CI around mean	38.4	108
35	UA	E002	Chromium, total	mg/L	12/09/15 - 08/24/23	30	97	CB around T-S line	0.0015	0.00130
35	UA	E002	Cobalt, total	mg/L	12/09/15 - 08/24/23	30	43	CI around median	0.001	0.00170
35	UA	E002	Fluoride, total	mg/L	12/09/15 - 08/24/23	31	3	CI around median	0.17	0.170
35	UA	E002	Lead, total	mg/L	12/09/15 - 08/24/23	30	90	CI around median	0.001	0.001
35	UA	E002	Lithium, total	mg/L	12/09/15 - 08/24/23	30	0	CI around mean	0.0248	0.0140
35	UA	E002	Mercury, total	mg/L	12/09/15 - 08/24/23	29	100	All ND - Last	0.0002	0.0002
35	UA	E002	Molybdenum, total	mg/L	12/09/15 - 08/24/23	30	0	CI around mean	0.0668	0.00200
35	UA	E002	pH (field)	SU	12/09/15 - 08/24/23	31	0	CB around linear reg	6.8/7.0	6.7/7.4

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
35	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/09/15 - 08/24/23	23	0	CI around median	0.25	2.60
35	UA	E002	Selenium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.0025	0.00110
35	UA	E002	Sulfate, total	mg/L	12/09/15 - 08/24/23	31	0	CB around linear reg	649	117
35	UA	E002	Thallium, total	mg/L	12/09/15 - 08/24/23	30	100	All ND - Last	0.002	0.001
35	UA	E002	Total Dissolved Solids	mg/L	12/09/15 - 08/24/23	31	0	CB around linear reg	1,250	830
49	UA	E002	Antimony, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.003	0.001
49	UA	E002	Arsenic, total	mg/L	12/10/15 - 08/25/23	30	97	CI around median	0.001	0.001
49	UA	E002	Barium, total	mg/L	12/10/15 - 08/25/23	30	0	CB around T-S line	0.0615	0.156
49	UA	E002	Beryllium, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.001	0.001
49	UA	E002	Boron, total	mg/L	12/10/15 - 08/25/23	31	0	CB around linear reg	0.457	0.205
49	UA	E002	Cadmium, total	mg/L	12/10/15 - 08/25/23	30	30	CB around linear reg	0.00159	0.001
49	UA	E002	Chloride, total	mg/L	12/10/15 - 08/25/23	31	0	CI around median	100	108
49	UA	E002	Chromium, total	mg/L	12/10/15 - 08/25/23	30	97	CB around T-S line	0.0015	0.00130
49	UA	E002	Cobalt, total	mg/L	12/10/15 - 08/25/23	30	0	CI around mean	0.0045	0.00170
49	UA	E002	Fluoride, total	mg/L	12/10/15 - 08/25/23	31	3	CI around median	0.15	0.170
49	UA	E002	Lead, total	mg/L	12/10/15 - 08/25/23	30	93	CI around median	0.001	0.001
49	UA	E002	Lithium, total	mg/L	12/10/15 - 08/25/23	30	0	CI around mean	0.024	0.0140
49	UA	E002	Mercury, total	mg/L	12/10/15 - 08/25/23	29	100	All ND - Last	0.0002	0.0002
49	UA	E002	Molybdenum, total	mg/L	12/10/15 - 08/25/23	30	0	CB around linear reg	0.0223	0.00200
49	UA	E002	pH (field)	SU	12/10/15 - 08/25/23	32	0	CI around mean	7.1/7.2	6.7/7.4
49	UA	E002	Radium 226 + Radium 228, total	pCi/L	12/10/15 - 08/25/23	23	0	CI around mean	0.31	2.60
49	UA	E002	Selenium, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.0025	0.00110
49	UA	E002	Sulfate, total	mg/L	12/10/15 - 08/25/23	31	0	CB around linear reg	69.6	117
49	UA	E002	Thallium, total	mg/L	12/10/15 - 08/25/23	30	100	All ND - Last	0.002	0.001
49	UA	E002	Total Dissolved Solids	mg/L	12/10/15 - 08/25/23	31	0	CB around linear reg	576	830
50	UA	E002	Antimony, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.003	0.001
50	UA	E002	Arsenic, total	mg/L	09/17/19 - 08/25/23	15	93	CI around median	0.001	0.001

845 QUARTERLY REPORT HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Well ID	HSU	Event	Parameter	Units	Date Range	Sample Count	Percent ND	Statistical Calculation	Statistical Result	Background
50	UA	E002	Barium, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	0.0859	0.156
50	UA	E002	Beryllium, total	mg/L	09/17/19 - 08/25/23	14	100	All ND - Last	0.001	0.001
50	UA	E002	Boron, total	mg/L	09/17/19 - 08/25/23	15	0	CI around geomean	0.682	0.205
50	UA	E002	Cadmium, total	mg/L	09/17/19 - 08/25/23	15	7	CI around median	0.0011	0.001
50	UA	E002	Chloride, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	89.7	108
50	UA	E002	Chromium, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.005	0.00130
50	UA	E002	Cobalt, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	0.0043	0.00170
50	UA	E002	Fluoride, total	mg/L	09/17/19 - 08/25/23	15	27	CB around T-S line	0.11	0.170
50	UA	E002	Lead, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.0005	0.001
50	UA	E002	Lithium, total	mg/L	09/17/19 - 08/25/23	15	0	CI around median	0.0197	0.0140
50	UA	E002	Mercury, total	mg/L	12/11/19 - 08/25/23	14	100	All ND - Last	0.0002	0.0002
50	UA	E002	Molybdenum, total	mg/L	09/17/19 - 08/25/23	15	0	CI around geomean	0.0276	0.00200
50	UA	E002	pH (field)	SU	09/17/19 - 08/25/23	18	0	CB around linear reg	7.2/7.6	6.7/7.4
50	UA	E002	Radium 226 + Radium 228, total	pCi/L	09/17/19 - 08/25/23	11	0	CI around mean	0.527	2.60
50	UA	E002	Selenium, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.0025	0.00110
50	UA	E002	Sulfate, total	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	85.7	117
50	UA	E002	Thallium, total	mg/L	09/17/19 - 08/25/23	15	100	All ND - Last	0.002	0.001
50	UA	E002	Total Dissolved Solids	mg/L	09/17/19 - 08/25/23	15	0	CI around mean	607	830

ATTACHMENT C.

COMPARISON OF STATISTICAL RESULTS TO BACKGROUND - QUARTER 3, 2023 845 QUARTERLY REPORT

HENNEPIN POWER PLANT WEST ASH POND SYSTEM HENNEPIN, IL

Notes:

Lower Confidence Limit (LCL) or Upper Confidence Limit (UCL) exceeded the statistical background value HSU = hydrostratigraphic unit:

UA = Uppermost Aquifer

mg/L = milligrams per liter

ND = non-detect

pCi/L = picocuries per liter

SU = standard units

Sample Count = number of samples from Sampled Date Range used to calculate the Statistical Result Statistical Calculation = method used to calculate the statistical result:

All ND - Last = All results were below the reporting limit, and the last determined reporting limit is shown

CB around T-S line = Confidence band around Thiel-Sen line

CB around linear reg = Confidence band around linear regression

CI around geomean = Confidence interval around the geometric mean

CI around mean = Confidence interval around the mean

CI around median = Confidence interval around the median

Statistical Result = calculated in accordance with the Statistical Analysis Plan using constituent concentrations observed at each monitoring well during all sampling events within the specified date range For pH, the values presented are the lower / upper limits of the background determination

